2025年上教版高二數(shù)學上冊階段測試試卷含答案_第1頁
2025年上教版高二數(shù)學上冊階段測試試卷含答案_第2頁
2025年上教版高二數(shù)學上冊階段測試試卷含答案_第3頁
2025年上教版高二數(shù)學上冊階段測試試卷含答案_第4頁
2025年上教版高二數(shù)學上冊階段測試試卷含答案_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年上教版高二數(shù)學上冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、下列特殊命題中假命題的個數(shù)是()

①有的實數(shù)是無限不循環(huán)小數(shù);

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3

2、復數(shù)z滿足z(2+i)=2i-1,則復數(shù)z的實部與虛部之和為A.1B.-1C.2D.33、a,b表示兩條直線,表示平面,下列命題正確的是()A.若則B.若C.D.4、【題文】將函數(shù)y="sin"x的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是()A.y=sin(2x-)B.y=sin(2x-)C.y=sin(x-)D.y=sin(x-)5、已知函數(shù)在x=1處的導數(shù)為1,則A.3B.C.D.評卷人得分二、填空題(共6題,共12分)6、【題文】在中,=____.7、【題文】計算:=____.8、為調(diào)查長沙市中學生平均每人每天參加體育鍛煉時間(單位:分鐘),按鍛煉時間分下一列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上.有l(wèi)0000名中學生參加了此項活動,如圖是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的頻率是____.

9、已知函數(shù)f(x)=2x3﹣x2+ax+1在(0,+∞)有兩個極值,則實數(shù)a的取值范圍為____10、已知隨機變量X的分布列為P(X=k)=(k=1,2,3,4),則a等于____.11、已知A(-1,1,1),B(0,1,1)則|AB|=______.評卷人得分三、作圖題(共6題,共12分)12、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

13、A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)14、已知,A,B在直線l的兩側(cè),在l上求一點,使得PA+PB最?。ㄈ鐖D所示)15、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

16、A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)17、分別畫一個三棱錐和一個四棱臺.評卷人得分四、解答題(共2題,共20分)18、【題文】已知橢圓的焦距為離心率為其右焦點為過點作直線交橢圓于另一點

(Ⅰ)若求外接圓的方程;

(Ⅱ)若直線與橢圓相交于兩點且求的取值范圍.19、【題文】已知向量(),向量

(Ⅰ)求向量(Ⅱ)若求評卷人得分五、計算題(共4題,共24分)20、已知等式在實數(shù)范圍內(nèi)成立,那么x的值為____.21、1.(本小題滿分12分)已知投資某項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是.設(shè)該項目產(chǎn)品價格在一年內(nèi)進行2次獨立的調(diào)整,記產(chǎn)品價格在一年內(nèi)的下降次數(shù)為對該項目每投資十萬元,取0、1、2時,一年后相應(yīng)的利潤為1.6萬元、2萬元、2.4萬元.求投資該項目十萬元,一年后獲得利潤的數(shù)學期望及方差.22、設(shè)L為曲線C:y=在點(1,0)處的切線.求L的方程;23、求證:ac+bd≤?.評卷人得分六、綜合題(共4題,共40分)24、如圖,在直角坐標系中,點A,B,C的坐標分別為(-1,0),(3,0),(0,3),過AB,C三點的拋物的對稱軸為直線l,D為對稱軸l上一動點.

(1)求拋物線的解析式;

(2)求當AD+CD最小時點D的坐標;

(3)以點A為圓心;以AD為半徑作⊙A.

①證明:當AD+CD最小時;直線BD與⊙A相切;

②寫出直線BD與⊙A相切時,D點的另一個坐標:____.25、(2009?新洲區(qū)校級模擬)如圖,已知直角坐標系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標是(a、b),由點P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.則AF?BE=____.26、(2015·安徽)設(shè)橢圓E的方程為+=1(ab0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足=2直線OM的斜率為27、已知f(x)=﹣3x2+a(6﹣a)x+6.參考答案一、選擇題(共5題,共10分)1、B【分析】

在①中若x=π;是無限不循環(huán)小數(shù),故真;

在②中若邊長為3.4.5的三角形不是等腰三角形;故真;

在③中有一個內(nèi)角為90度的菱形是正方形;故真;

其中①②③全是真命題.

故選B

【解析】【答案】①從實數(shù)的組成可知②從三角形的類型入手③正方形是特殊的菱形;一一進行判斷即可.

2、A【分析】試題分析:∵z(2+i)=2i-1,∴z==i,∴復數(shù)z的實部與虛部之和為0+1=1,考點:復數(shù)的概念.【解析】【答案】A3、B【分析】【解析】

一條直線垂直于平面,則垂直于平面內(nèi)的任何一條直線,故B正確。A中,b與的位置關(guān)系可能平行也可能異面,相交。C中b與的位置關(guān)系可能平行。D中,a,b有三種位置關(guān)系?!窘馕觥俊敬鸢浮緽4、C【分析】【解析】將y="sin"x的圖像向右平移個單位長度后變?yōu)榈膱D像,再把所得各點的橫坐標伸長到原來的2倍,所得圖像的函數(shù)解析式是故選C.【解析】【答案】C5、B【分析】【分析】二、填空題(共6題,共12分)6、略

【分析】【解析】解:因為【解析】【答案】7、略

【分析】【解析】略【解析】【答案】8、0.38【分析】【解答】解:由圖知輸出的S的值是運動時間超過20分鐘的學生人數(shù);

由于統(tǒng)計總?cè)藬?shù)是10000;又輸出的S=6200;

故運動時間不超過20分鐘的學生人數(shù)是3800

事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的”頻率是=0.38

故答案為:0.38.

【分析】本題考查循環(huán)結(jié)構(gòu),由圖可以得出,此循環(huán)結(jié)構(gòu)的功能是統(tǒng)計出運動時間超過20分鐘的人數(shù),由此即可解出每天運動時間不超過20分鐘的人數(shù),從而計算出事件“平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的”頻率.9、(0,+∞)【分析】【解答】解:f′(x)=6x2﹣ax+a;

∵f(x)在(0;+∞)上有兩個極值;

∴方程6x2﹣ax+a=0在(0;+∞)上有兩個不同實數(shù)根;

∴根據(jù)韋達定理

∴a>0;

∴實數(shù)a的取值范圍為(0;+∞).

故答案為:(0;+∞).

【分析】求導數(shù)得到f′(x)=6x2﹣ax+a,根據(jù)題意便知方程6x2﹣ax+a=0有兩個不同的正實根,這樣根據(jù)韋達定理便可得出關(guān)于a的不等式,從而得出a的取值范圍.10、5【分析】【解答】解:由題意,(1+2+3+4)=1;∴a=5.故答案為:5.

【分析】根據(jù)概率和為1,建立方程,進而得到a的數(shù)值.11、略

【分析】解:A(-1;1,1),B(0,1,1);

則|AB|==1.

故答案為:1.

根據(jù)兩點間的距離公式求值即可.

本題考查了空間兩點間的距離公式應(yīng)用問題,是基礎(chǔ)題.【解析】1三、作圖題(共6題,共12分)12、略

【分析】【分析】根據(jù)軸對稱的性質(zhì)作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對稱的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點之間線段最短的性質(zhì)可知;C點即為所求.

13、略

【分析】【分析】作出A關(guān)于OM的對稱點A',關(guān)于ON的A對稱點A'',連接A'A'',根據(jù)兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對稱點A';關(guān)于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對稱;A與A″關(guān)于ON對稱;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點之間線段最短,A'A''為△ABC的最小值.14、略

【分析】【分析】顯然根據(jù)兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;

這樣PA+PB最??;

理由是兩點之間,線段最短.15、略

【分析】【分析】根據(jù)軸對稱的性質(zhì)作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對稱的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點之間線段最短的性質(zhì)可知;C點即為所求.

16、略

【分析】【分析】作出A關(guān)于OM的對稱點A',關(guān)于ON的A對稱點A'',連接A'A'',根據(jù)兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對稱點A';關(guān)于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對稱;A與A″關(guān)于ON對稱;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點之間線段最短,A'A''為△ABC的最小值.17、解:畫三棱錐可分三步完成。

第一步:畫底面﹣﹣畫一個三角形;

第二步:確定頂點﹣﹣在底面外任一點;

第三步:畫側(cè)棱﹣﹣連接頂點與底面三角形各頂點.

畫四棱可分三步完成。

第一步:畫一個四棱錐;

第二步:在四棱錐一條側(cè)棱上取一點;從這點開始,順次在各個面內(nèi)畫與底面對應(yīng)線段平行的線段;

第三步:將多余線段擦去.

【分析】【分析】畫三棱錐和畫四棱臺都是需要先畫底面,再確定平面外一點連接這點與底面上的頂點,得到錐體,在畫四棱臺時,在四棱錐一條側(cè)棱上取一點,從這點開始,順次在各個面內(nèi)畫與底面對應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共2題,共20分)18、略

【分析】【解析】

試題分析:解:(Ⅰ)由題意知:又

解得:橢圓的方程為:2分。

由此可得:

設(shè)則

由或

即或4分。

①當?shù)淖鴺藶闀r,外接圓是以為圓心,為半徑的圓,即5分。

②當?shù)淖鴺藶闀r,和的斜率分別為和所以為直角三角形,其外接圓是以線段為直徑的圓,圓心坐標為半徑為

外接圓的方程為

綜上可知:外接圓方程是或7分。

(Ⅱ)由題意可知直線的斜率存在.設(shè)

由得:

由得:9分。

即10分。

結(jié)合()得:12分。

所以或14分。

考點:直線與橢圓的位置關(guān)系。

點評:主要是考查了直線與橢圓的位置關(guān)系的運用,屬于中檔題?!窘馕觥俊敬鸢浮浚?)外接圓方程是或

(2)或19、略

【分析】【解析】本試題主要考查了向量的數(shù)量積的運算;以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵∴1分。

∵得到三角關(guān)系是結(jié)合解得。

(2)由解得結(jié)合二倍角公式和代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵∴1分。

∵∴即①2分。

又②由①②聯(lián)立方程解得,5分。

∴6分。

(Ⅱ)∵即7分。

∴8分。

又∵9分。

10分。

∴.

解法二:(Ⅰ)1分。

又∴即①2分。

又②

將①代入②中,可得③4分。

將③代入①中,得5分。

∴6分。

(Ⅱ)方法一∵∴且7分。

∴從而8分。

由(Ⅰ)知9分。

∴10分。

又∵∴又∴11分。

綜上可得12分。

方法二∵∴且7分。

∴8分。

由(Ⅰ)知9分。

∴10分。

∵且注意到

∴又∴11分。

綜上可得12分。

(若用又∵∴【解析】【答案】(Ⅰ)∴6分。

(Ⅱ)∴.五、計算題(共4題,共24分)20、略

【分析】【分析】先移項并整理得到=,然后兩邊進行6次方,求解即可.【解析】【解答】解:原式可化為=;

6次方得,(x-1)3=(x-1)2;

即(x-1)2(x-2)=0;

∴x-1=0;x-2=0;

解得x=1或x=2.

故答案為:1或2.21、略

【分析】由題設(shè)得則的概率分布為4分。012P故收益的概率分布為。1.622.4P所以=28分12分【解析】【答案】=222、解:所以當x=1時,k=點斜式得直線方程為y=x-1【分析】【分析】函數(shù)的導數(shù)這是導函數(shù)的除法運算法則23、證明:∵(a2+b2)?(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,∴(a2+b2)?(c2+d2)≥(ac+bd)2;

∴|ac+bd|≤?

∴ac+bd≤?【分析】【分析】作差(a2+b2)?(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,即可證明.六、綜合題(共4題,共40分)24、略

【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.

(2)連接BC;交直線l于點D,根據(jù)拋物線對稱軸的性質(zhì),點B與點A關(guān)于直線l對稱,∴AD=BD.

∴AD+CD=BD+CD;由“兩點之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點;

設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點D的坐標.

(3)由(2)可知,當AD+CD最短時,D在直線BC上,由于已知A,B,C,D四點坐標,根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點D與現(xiàn)在的點D關(guān)于x軸對稱,所以另一點D的坐標為(1,-2).【解析】【解答】解:

(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)

將(0;3)代入上式,得3=a(0+1)(0-3).

解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).

即y=-x2+2x+3.(3分)

(2)連接BC;交直線l于點D.

∵點B與點A關(guān)于直線l對稱;

∴AD=BD.(4分)

∴AD+CD=BD+CD=BC.

由“兩點之間;線段最短”的原理可知:

此時AD+CD最小;點D的位置即為所求.(5分)

設(shè)直線BC的解析式為y=kx+b;

由直線BC過點(3;0),(0,3);

解這個方程組,得

∴直線BC的解析式為y=-x+3.(6分)

由(1)知:對稱軸l為;即x=1.

將x=1代入y=-x+3;得y=-1+3=2.

∴點D的坐標為(1;2).(7分)

說明:用相似三角形或三角函數(shù)求點D的坐標也可;答案正確給(2分).

(3)①連接AD.設(shè)直線l與x軸的交點記為點E.

由(2)知:當AD+CD最小時;點D的坐標為(1,2).

∴DE=AE=BE=2.

∴∠DAB=∠DBA=45度.(8分)

∴∠ADB=90度.

∴AD⊥BD.

∴BD與⊙A相切.(9分)

②∵另一點D與D(1;2)關(guān)于x軸對稱;

∴D(1,-2).(11分)25、略

【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標是b,因而F點的縱坐標是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點,因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標為(a,);且PN⊥OB,PM⊥OA;

∴N的坐標為(0,);M點的坐標為(a,0);

∴BN=1-;

在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);

∴NF=BN=1-;

∴F點的坐標為(1-,);

∵OM=a;

∴AM=1-a;

∴EM=AM=1-a;

∴E點的坐標為(a;1-a);

∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;

∴AF?BE=1.

故答案為:1.26、(1){#mathml#}255

{#/mathml#};(2){#mathml#}x245+y29=1

{#/ma

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論