長(zhǎng)沙理工大學(xué)《機(jī)器視覺與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
長(zhǎng)沙理工大學(xué)《機(jī)器視覺與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
長(zhǎng)沙理工大學(xué)《機(jī)器視覺與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
長(zhǎng)沙理工大學(xué)《機(jī)器視覺與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
長(zhǎng)沙理工大學(xué)《機(jī)器視覺與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)長(zhǎng)沙理工大學(xué)

《機(jī)器視覺與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺在無人駕駛中的應(yīng)用需要對(duì)周圍環(huán)境進(jìn)行快速準(zhǔn)確的感知。假設(shè)車輛要在復(fù)雜的城市道路環(huán)境中行駛,以下哪種傳感器的數(shù)據(jù)融合可能對(duì)提高環(huán)境感知的可靠性至關(guān)重要?()A.攝像頭與激光雷達(dá)B.攝像頭與毫米波雷達(dá)C.激光雷達(dá)與超聲波傳感器D.以上都有可能2、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法3、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對(duì)于準(zhǔn)確理解場(chǎng)景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機(jī)選擇圖像中的部分區(qū)域進(jìn)行分析4、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實(shí)感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對(duì)抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實(shí)感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實(shí)世界完全一致的圖像5、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息6、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法7、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺中的重要任務(wù)之一,旨在定位和識(shí)別圖像中的多個(gè)目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測(cè)行人和車輛。對(duì)于處理這種復(fù)雜場(chǎng)景的目標(biāo)檢測(cè)任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測(cè)結(jié)果?()A.基于滑動(dòng)窗口的傳統(tǒng)目標(biāo)檢測(cè)方法B.基于區(qū)域提議的目標(biāo)檢測(cè)算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測(cè)算法,如YOLO系列D.基于聚類的目標(biāo)檢測(cè)方法8、在計(jì)算機(jī)視覺的目標(biāo)識(shí)別任務(wù)中,假設(shè)要識(shí)別不同種類的水果。以下關(guān)于應(yīng)對(duì)類內(nèi)差異和類間相似性的策略,哪一項(xiàng)是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動(dòng)適應(yīng)能力9、計(jì)算機(jī)視覺中的行人重識(shí)別是指在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人。假設(shè)要在一個(gè)大型商場(chǎng)的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識(shí)別,以下關(guān)于行人重識(shí)別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對(duì)行人的姿態(tài)和光照變化不敏感,識(shí)別準(zhǔn)確率高B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法能夠?qū)W習(xí)到行人的判別性特征,但容易受到背景干擾C.行人重識(shí)別系統(tǒng)只需要關(guān)注行人的外觀特征,不需要考慮行人的行為特征D.行人重識(shí)別在不同場(chǎng)景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響10、計(jì)算機(jī)視覺中的場(chǎng)景理解是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個(gè)城市街道的場(chǎng)景圖像,包括道路、建筑物、車輛和行人等元素。以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.基于語(yǔ)義分割的方法能夠?qū)D像中的每個(gè)像素分類為不同的場(chǎng)景元素,但無法提供元素之間的關(guān)系B.目標(biāo)檢測(cè)結(jié)合語(yǔ)義分割可以實(shí)現(xiàn)對(duì)場(chǎng)景的初步理解,但對(duì)于復(fù)雜的場(chǎng)景結(jié)構(gòu)難以準(zhǔn)確描述C.基于圖模型的方法能夠很好地表示場(chǎng)景元素之間的關(guān)系,但建模過程復(fù)雜,計(jì)算量大D.場(chǎng)景理解只需要對(duì)圖像中的可見元素進(jìn)行分析,不需要考慮潛在的語(yǔ)義信息11、在計(jì)算機(jī)視覺的三維重建任務(wù)中,需要從多視角的圖像中恢復(fù)物體的三維形狀。假設(shè)我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結(jié)構(gòu)光方法C.運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SFM)D.基于投影的方法12、圖像分類是計(jì)算機(jī)視覺的常見應(yīng)用之一。考慮一個(gè)需要對(duì)大量自然風(fēng)景圖片進(jìn)行分類的任務(wù),這些圖片包含了不同的季節(jié)、地理位置和天氣條件。為了提高分類準(zhǔn)確率,以下哪種預(yù)處理操作可能最為有效?()A.對(duì)圖像進(jìn)行裁剪和縮放,使其具有統(tǒng)一的尺寸B.對(duì)圖像進(jìn)行直方圖均衡化,增強(qiáng)對(duì)比度C.將圖像轉(zhuǎn)換為灰度圖像,減少顏色信息的干擾D.對(duì)圖像進(jìn)行隨機(jī)旋轉(zhuǎn)和翻轉(zhuǎn),增加數(shù)據(jù)多樣性13、計(jì)算機(jī)視覺在智能零售中的應(yīng)用可以改善購(gòu)物體驗(yàn)和提高運(yùn)營(yíng)效率。假設(shè)一個(gè)超市需要通過計(jì)算機(jī)視覺實(shí)現(xiàn)自動(dòng)結(jié)賬和庫(kù)存管理。以下關(guān)于計(jì)算機(jī)視覺在智能零售中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過商品識(shí)別技術(shù)自動(dòng)識(shí)別顧客購(gòu)買的商品,實(shí)現(xiàn)快速結(jié)賬B.能夠?qū)崟r(shí)監(jiān)測(cè)貨架上商品的庫(kù)存水平,及時(shí)提醒補(bǔ)貨C.計(jì)算機(jī)視覺系統(tǒng)能夠準(zhǔn)確識(shí)別所有商品的包裝和標(biāo)簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營(yíng)銷策略提供數(shù)據(jù)支持14、對(duì)于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時(shí)保留圖像的細(xì)節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時(shí)可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對(duì)低分辨率圖像進(jìn)行簡(jiǎn)單的銳化處理D.不進(jìn)行任何處理,直接使用低分辨率圖像15、計(jì)算機(jī)視覺中的圖像去霧是一個(gè)具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對(duì)大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強(qiáng)的去霧方法D.基于濾波的去霧方法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋計(jì)算機(jī)視覺中的光流估計(jì)的概念及用途。2、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺中的圖像分割技術(shù)。3、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺在游戲開發(fā)中的作用。4、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺中的語(yǔ)義分割任務(wù)。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)開發(fā)一個(gè)能夠識(shí)別不同種類反芻動(dòng)物的計(jì)算機(jī)視覺系統(tǒng)。2、(本題5分)使用目標(biāo)跟蹤算法,對(duì)籃球比賽中的籃球運(yùn)動(dòng)員進(jìn)行全場(chǎng)跟蹤。3、(本題5分)運(yùn)用深度學(xué)習(xí)模型,對(duì)古代陶瓷的年代和產(chǎn)地進(jìn)行鑒定。4、(本題5分)使用計(jì)算機(jī)視覺方法,檢測(cè)商場(chǎng)門口的人員聚集情況。5、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)物流倉(cāng)庫(kù)中包裹的標(biāo)簽信息。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析某知名運(yùn)動(dòng)品牌的廣告設(shè)計(jì),探討其如何運(yùn)用色彩、圖形和字體來傳達(dá)品牌的活力與激情,以及如何通過視覺元素吸引目標(biāo)受眾并增強(qiáng)品牌識(shí)別度。2、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論