福建省長樂中學(xué)2024屆高三下學(xué)期聯(lián)考押題卷數(shù)學(xué)試題試卷_第1頁
福建省長樂中學(xué)2024屆高三下學(xué)期聯(lián)考押題卷數(shù)學(xué)試題試卷_第2頁
福建省長樂中學(xué)2024屆高三下學(xué)期聯(lián)考押題卷數(shù)學(xué)試題試卷_第3頁
福建省長樂中學(xué)2024屆高三下學(xué)期聯(lián)考押題卷數(shù)學(xué)試題試卷_第4頁
福建省長樂中學(xué)2024屆高三下學(xué)期聯(lián)考押題卷數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

福建省長樂中學(xué)2023屆高三下學(xué)期聯(lián)考押題卷數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍B.向右平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍C.向左平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍D.向左平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍2.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.3.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.4.設(shè)全集,集合,,則()A. B. C. D.5.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.6.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,7.已知,,則()A. B. C. D.8.已知向量,,且,則()A. B. C.1 D.29.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)10.如圖,將兩個(gè)全等等腰直角三角形拼成一個(gè)平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.11.已知向量,,則向量在向量上的投影是()A. B. C. D.12.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了”.丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對的,則獲獎(jiǎng)的歌手是__________.14.已知函數(shù)的部分圖象如圖所示,則的值為____________.15.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.16.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長度的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)是直線的一點(diǎn),過點(diǎn)作曲線的切線,切點(diǎn)為,求的最小值.19.(12分)如圖,平面四邊形中,,是上的一點(diǎn),是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.20.(12分)已知是拋物線的焦點(diǎn),點(diǎn)在軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.21.(12分)已知?jiǎng)訄A經(jīng)過點(diǎn),且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的橫坐標(biāo)為,,為圓與曲線的公共點(diǎn),若直線的斜率,且,求的值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.2.C【解析】

先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.3.C【解析】

將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,因?yàn)楹瘮?shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.4.D【解析】

求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5.B【解析】

由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會大大增加,甚至沒法求解.6.B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個(gè),成績不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.7.D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.8.A【解析】

根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點(diǎn)睛】本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.9.C【解析】

計(jì)算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.10.C【解析】

利用建系,假設(shè)長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標(biāo)系如圖設(shè),所以則所以所以故選:C【點(diǎn)睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個(gè)平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎(chǔ)題.11.A【解析】

先利用向量坐標(biāo)運(yùn)算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點(diǎn)睛】本題考查了向量加法、減法的坐標(biāo)運(yùn)算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12.B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.14.【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進(jìn)一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點(diǎn)睛】本題考查由圖象求解析式及函數(shù)值,考查學(xué)生識圖、計(jì)算等能力,是一道中檔題.15.【解析】

根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.16.【解析】

設(shè)為的中點(diǎn),根據(jù)弦長公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結(jié)合弦長公式得到,求出點(diǎn)的軌跡方程,即可求解.【詳解】設(shè)為的中點(diǎn),在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、相交弦長的最值,解題的關(guān)鍵求出點(diǎn)的軌跡方程,考查計(jì)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因?yàn)榍覟殇J角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點(diǎn)睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18.(1),;(2)見解析【解析】

(1)消去t,得直線的普通方程,利用極坐標(biāo)與普通方程互化公式得曲線的直角坐標(biāo)方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因?yàn)?,,所以曲線的直角坐標(biāo)方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.【點(diǎn)睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)與普通方程互化,直線與圓的位置關(guān)系,是中檔題19.(1)見解析;(2)【解析】

(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點(diǎn),所以,從而可證得結(jié)論;(2)由于在中,,而平面平面,所以點(diǎn)在平面的投影恰好為的中點(diǎn),所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因?yàn)?所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點(diǎn),所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,以為坐標(biāo)原點(diǎn),方向?yàn)檩S方向,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點(diǎn)睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學(xué)生的轉(zhuǎn)化思想和計(jì)算能力,屬于中檔題.20.(1);(2).【解析】

(1)求得點(diǎn)的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實(shí)數(shù)的值,進(jìn)而可得出拋物線的方程;(2)設(shè)點(diǎn),,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合求得的值,可得出直線所過定點(diǎn)的坐標(biāo),由此可得出點(diǎn)到直線的最大距離.【詳解】(1)易知點(diǎn),又,所以點(diǎn),則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設(shè)的方程為,聯(lián)立有,設(shè)點(diǎn),,則,所以.所以,解得.所以直線的方程為,恒過點(diǎn).又點(diǎn),故當(dāng)直線與軸垂直時(shí),點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查拋物線方程的求解,同時(shí)也考查了拋物線中最值問題的求解,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.21.見解析【解析】

(1)設(shè),則點(diǎn)到軸的距離為,因?yàn)閳A被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標(biāo)準(zhǔn)方程為.(2)設(shè),,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論