版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)襄陽(yáng)科技職業(yè)學(xué)院
《產(chǎn)品質(zhì)量先期策劃》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)中的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在跟蹤過(guò)程中發(fā)生了嚴(yán)重的形變。以下關(guān)于處理目標(biāo)形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標(biāo)形變,保持跟蹤的準(zhǔn)確性B.特征點(diǎn)跟蹤方法對(duì)目標(biāo)形變不敏感,在這種情況下仍然能夠可靠跟蹤C(jī).深度學(xué)習(xí)中的孿生網(wǎng)絡(luò)在目標(biāo)形變時(shí)容易丟失目標(biāo),無(wú)法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對(duì)目標(biāo)形變的跟蹤魯棒性2、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,需要理解整個(gè)圖像的語(yǔ)義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.單獨(dú)對(duì)圖像中的每個(gè)物體進(jìn)行識(shí)別和分類(lèi)就能實(shí)現(xiàn)場(chǎng)景理解B.忽略圖像中的上下文信息和空間布局對(duì)場(chǎng)景理解沒(méi)有影響C.利用深度學(xué)習(xí)中的語(yǔ)義分割和圖模型可以更好地理解場(chǎng)景的結(jié)構(gòu)和語(yǔ)義關(guān)系D.場(chǎng)景理解只適用于簡(jiǎn)單的室內(nèi)場(chǎng)景,對(duì)于復(fù)雜的戶(hù)外場(chǎng)景無(wú)法處理3、在目標(biāo)檢測(cè)中,YOLO(YouOnlyLookOnce)算法的特點(diǎn)是()A.檢測(cè)速度快B.檢測(cè)精度高C.適用于小目標(biāo)檢測(cè)D.對(duì)遮擋不敏感4、假設(shè)要構(gòu)建一個(gè)能夠?qū)Ψb進(jìn)行款式和顏色識(shí)別的計(jì)算機(jī)視覺(jué)系統(tǒng),用于時(shí)尚推薦和庫(kù)存管理。在處理服裝圖像時(shí),由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設(shè)計(jì)的特征B.基于深度學(xué)習(xí)的自動(dòng)特征C.顏色直方圖D.以上都是5、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行視頻監(jiān)控中的異常行為檢測(cè),例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識(shí)別異常行為?()A.建立正常行為模型B.運(yùn)動(dòng)軌跡分析C.人群密度估計(jì)D.以上都是6、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車(chē)正在道路上行駛,需要識(shí)別各種交通標(biāo)志和障礙物。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺(jué)任務(wù)的描述,正確的是:()A.只需對(duì)前方物體進(jìn)行簡(jiǎn)單的圖像分類(lèi),就能實(shí)現(xiàn)安全的自動(dòng)駕駛B.準(zhǔn)確的目標(biāo)檢測(cè)和語(yǔ)義分割對(duì)于理解復(fù)雜的道路場(chǎng)景至關(guān)重要C.計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛中作用不大,主要依靠其他傳感器如雷達(dá)D.對(duì)于交通標(biāo)志的識(shí)別,顏色信息比形狀和圖案信息更重要7、在計(jì)算機(jī)視覺(jué)中,圖像分類(lèi)是一項(xiàng)基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動(dòng)物的圖像數(shù)據(jù)集,需要訓(xùn)練一個(gè)模型來(lái)準(zhǔn)確區(qū)分不同的動(dòng)物類(lèi)別。在選擇圖像分類(lèi)模型時(shí),以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時(shí)表現(xiàn)出色?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如支持向量機(jī)(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)8、計(jì)算機(jī)視覺(jué)在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對(duì)一幅古老的繪畫(huà)進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫(huà)作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對(duì)原畫(huà)作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過(guò)程中可能引入新的顏色偏差,影響修復(fù)效果9、當(dāng)利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取10、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個(gè)城市街道的場(chǎng)景圖像,包括道路、建筑物、車(chē)輛和行人等元素。以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.基于語(yǔ)義分割的方法能夠?qū)D像中的每個(gè)像素分類(lèi)為不同的場(chǎng)景元素,但無(wú)法提供元素之間的關(guān)系B.目標(biāo)檢測(cè)結(jié)合語(yǔ)義分割可以實(shí)現(xiàn)對(duì)場(chǎng)景的初步理解,但對(duì)于復(fù)雜的場(chǎng)景結(jié)構(gòu)難以準(zhǔn)確描述C.基于圖模型的方法能夠很好地表示場(chǎng)景元素之間的關(guān)系,但建模過(guò)程復(fù)雜,計(jì)算量大D.場(chǎng)景理解只需要對(duì)圖像中的可見(jiàn)元素進(jìn)行分析,不需要考慮潛在的語(yǔ)義信息11、在計(jì)算機(jī)視覺(jué)的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分12、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)我們要分析一個(gè)視頻中物體的運(yùn)動(dòng)速度和方向,以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法13、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對(duì)于準(zhǔn)確理解場(chǎng)景是至關(guān)重要的?()A.物體的類(lèi)別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機(jī)選擇圖像中的部分區(qū)域進(jìn)行分析14、在計(jì)算機(jī)視覺(jué)的無(wú)人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無(wú)人駕駛汽車(chē)準(zhǔn)確感知周?chē)牡缆窢顩r、車(chē)輛和行人,同時(shí)要應(yīng)對(duì)惡劣天氣和復(fù)雜交通場(chǎng)景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達(dá)感知B.攝像頭視覺(jué)感知C.毫米波雷達(dá)感知D.以上技術(shù)融合感知15、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別旨在識(shí)別視頻中的人體動(dòng)作。假設(shè)要對(duì)一段監(jiān)控視頻中的人員動(dòng)作進(jìn)行分類(lèi),以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類(lèi)器的方法能夠處理復(fù)雜的動(dòng)作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動(dòng)作識(shí)別中無(wú)法捕捉動(dòng)作的時(shí)空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時(shí)處理空間和時(shí)間維度的信息,適用于動(dòng)作識(shí)別任務(wù)D.動(dòng)作識(shí)別系統(tǒng)對(duì)視頻的拍攝角度和背景變化不敏感,具有很強(qiáng)的通用性16、計(jì)算機(jī)視覺(jué)中的表情識(shí)別旨在識(shí)別圖像或視頻中人物的表情。假設(shè)要在一個(gè)情感分析系統(tǒng)中準(zhǔn)確識(shí)別表情,以下關(guān)于表情識(shí)別方法的描述,正確的是:()A.基于幾何特征的表情識(shí)別方法對(duì)表情的細(xì)微變化不敏感,識(shí)別準(zhǔn)確率低B.基于紋理特征的表情識(shí)別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識(shí)別中能夠?qū)W習(xí)到全局和局部的特征,但對(duì)大規(guī)模數(shù)據(jù)集依賴(lài)嚴(yán)重D.表情識(shí)別系統(tǒng)只適用于正面清晰的人臉表情,對(duì)于側(cè)臉和遮擋的表情無(wú)法識(shí)別17、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息18、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類(lèi)和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類(lèi)器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法19、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時(shí)保持可接受的視覺(jué)質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時(shí),提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP20、在計(jì)算機(jī)視覺(jué)的行人重識(shí)別任務(wù)中,假設(shè)要在多個(gè)攝像頭拍攝的畫(huà)面中找到同一個(gè)行人。以下關(guān)于特征融合的方法,哪一項(xiàng)是不太合理的?()A.將行人的外觀特征和步態(tài)特征進(jìn)行融合B.簡(jiǎn)單地將不同特征進(jìn)行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進(jìn)行融合D.利用深度學(xué)習(xí)模型自動(dòng)學(xué)習(xí)特征的融合方式二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在智能穿戴設(shè)備中的應(yīng)用。2、(本題5分)簡(jiǎn)述圖像的色彩管理技術(shù)。3、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行健身器材的檢測(cè)和設(shè)計(jì)?4、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行芯片制造中的缺陷檢測(cè)?5、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行圖像的去噪處理?三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)以一個(gè)時(shí)尚品牌的時(shí)裝秀舞臺(tái)設(shè)計(jì)為例,分析其如何通過(guò)視覺(jué)效果、燈光設(shè)計(jì)和音樂(lè)選擇展現(xiàn)時(shí)裝的魅力和品牌的時(shí)尚理念。2、(本題5分)以一個(gè)公益活動(dòng)的宣傳海報(bào)設(shè)計(jì)為例,分析其如何運(yùn)用視覺(jué)元素傳達(dá)公益主題和喚起公眾的參與意識(shí)。3、(本題5分)一家健身房的會(huì)員卡設(shè)計(jì)體現(xiàn)不同級(jí)別會(huì)員的權(quán)益。請(qǐng)?zhí)接憰?huì)員卡設(shè)計(jì)在卡面顏色、級(jí)別標(biāo)識(shí)、權(quán)益說(shuō)明上的特點(diǎn),以及如何激勵(lì)會(huì)員升級(jí)。4、(本題5分)觀察某藝術(shù)院校的招生宣傳冊(cè)設(shè)計(jì),分析其如何通過(guò)學(xué)生作品展示、校園風(fēng)光和專(zhuān)業(yè)介紹,吸引優(yōu)秀學(xué)生報(bào)考。5、(本題5分)某電影節(jié)的周邊產(chǎn)品設(shè)計(jì),如徽章、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度暖通工程保險(xiǎn)合同
- 課題申報(bào)參考:明清時(shí)期俄人旅華游記中的中國(guó)形象研究
- 課題申報(bào)參考:面向大學(xué)生情緒調(diào)節(jié)的人工智能眼動(dòng)交互音樂(lè)生成系統(tǒng)設(shè)計(jì)研究
- 二零二五年度模具行業(yè)創(chuàng)新項(xiàng)目合作合同2篇
- 2025版選礦廠礦山地質(zhì)勘查承包合同樣本3篇
- 2025年度個(gè)人汽車(chē)租賃與停車(chē)服務(wù)合同4篇
- 2025版寧夏糧食和物資儲(chǔ)備局糧食儲(chǔ)備庫(kù)智能化升級(jí)合同3篇
- 2025年度牛糞處理設(shè)施融資租賃合同范本4篇
- 2025版農(nóng)副業(yè)科技成果轉(zhuǎn)化承包合同書(shū)二份3篇
- 二零二五年度磚廠生產(chǎn)線(xiàn)承包租賃合同3篇
- 2024年銀行考試-興業(yè)銀行筆試參考題庫(kù)含答案
- 泵站運(yùn)行管理現(xiàn)狀改善措施
- 2024屆武漢市部分學(xué)校中考一模數(shù)學(xué)試題含解析
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術(shù)標(biāo)準(zhǔn)》
- 第19章 一次函數(shù) 單元整體教學(xué)設(shè)計(jì) 【 學(xué)情分析指導(dǎo) 】 人教版八年級(jí)數(shù)學(xué)下冊(cè)
- 浙教版七年級(jí)下冊(cè)科學(xué)全冊(cè)課件
- 弧度制及弧度制與角度制的換算
- 瓦楞紙箱計(jì)算公式測(cè)量方法
- 江蘇省中等職業(yè)學(xué)校學(xué)業(yè)水平考試商務(wù)營(yíng)銷(xiāo)類(lèi)(營(yíng)銷(xiāo)方向)技能考試測(cè)試題
- DB32-T 4004-2021水質(zhì) 17種全氟化合物的測(cè)定 高效液相色譜串聯(lián)質(zhì)譜法-(高清現(xiàn)行)
- DB15T 2724-2022 羊糞污收集處理技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論