版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年粵教版高一數(shù)學(xué)上冊階段測試試卷634考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、函數(shù)與y=在第一象限內(nèi)的交點坐標為()
A.(-1;1)
B.(1;-1)
C.(0;0)
D.(1;1)
2、下列對應(yīng)法則是從集合A到集合B的映射的是()A.A=R,B={x|x>0},B.C.A=N,B=D.A=R,B=3、若集合A={0,2,3,5},則集合A的真子集共有()A.7個B.8個C.15個D.16個4、【題文】
設(shè)非空集合滿足:當時,有現(xiàn)則的范圍是(▲)A.B.C.D.5、如圖,D
是鈻?ABC
邊AB
的中點,則向量CD鈫?
用BA鈫?BC鈫?
表示為(
)
A.12BA鈫?鈭?BC鈫?
B.鈭?12BA鈫?鈭?BC鈫?
C.12BA鈫?+BC鈫?
D.BC鈫?鈭?12BA鈫?
評卷人得分二、填空題(共5題,共10分)6、把函數(shù)的圖象上的所有點向右平移個單位,再把所有點的橫坐標縮短到原來的一半,而把所有點的縱坐標伸長到原來的4倍,所得圖象的表達式是____.7、函數(shù)的最大值是____.8、【題文】已知直線的方程為則與垂直的直線的傾斜角為____9、已知映射A→B的對應(yīng)法則f:x→3x+1,則B中的元素7在A中的與之對應(yīng)的元素是______.10、已知x;y的取值如表所示:
。x0134y2.24.34.86.7若y與x線性相關(guān),且y=2x+a,則a=______.評卷人得分三、證明題(共8題,共16分)11、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.12、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.13、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.14、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.15、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.16、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.17、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點;
(2)若CF=3,DE?EF=,求EF的長.18、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、作圖題(共1題,共9分)19、作出下列函數(shù)圖象:y=評卷人得分五、解答題(共1題,共3分)20、【題文】已知集合,,且,求實數(shù)的取值范圍。評卷人得分六、綜合題(共1題,共5分)21、若反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象都經(jīng)過一點A(a,2),另有一點B(2,0)在一次函數(shù)y=kx+b的圖象上.
(1)寫出點A的坐標;
(2)求一次函數(shù)y=kx+b的解析式;
(3)過點A作x軸的平行線,過點O作AB的平行線,兩線交于點P,求點P的坐標.參考答案一、選擇題(共5題,共10分)1、D【分析】
研究函數(shù)與y=知;其是冪函數(shù),在第一象限內(nèi)都過點(1,1);
故答案是:D.
或者說;由于題中考察的是在第一象限內(nèi)的交點,由此可以排除A,B,C;
故選D.
【解析】【答案】本題要用冪函數(shù)的圖象與圖象性質(zhì)的對應(yīng)來確定正確的選項,故解題時要先考查函數(shù)與y=的圖象性質(zhì);再觀察四個選項中點的特殊性,選出正確答案.
2、D【分析】試題分析:對于A,B選項,當x=0時,在B中沒有元素與它對應(yīng),故它們不是映射;對于C選項,A的元素1在B中沒有元素與之相對應(yīng)的象,故它們不是映射;對于D選項,A的每一個元素在B中都有唯一的元素與之對應(yīng),故它是映射;故選D.考點:映射的概念.【解析】【答案】D3、C【分析】試題分析:若一個集合中含有個元素,其子集個數(shù)為真子集個數(shù)為非空子集個數(shù)為非空真子集個數(shù)為本題則真子集共有考點:集合的真子集的概念.【解析】【答案】C4、D【分析】【解析】略【解析】【答案】D5、A【分析】解:隆脽D
是鈻?ABC
邊AB
的中點,隆脿CD鈫?=CB鈫?+BD鈫?=鈭?BC鈫?+12BA鈫?
故選:A
直接利用向量線性運算即可.
本題考查了向量的線性運算,屬于基礎(chǔ)題.【解析】A
二、填空題(共5題,共10分)6、略
【分析】
由題意函數(shù)的圖象上各點向右平移個單位長度,得到y(tǒng)=sin(2x--)=sin(2x-);再把橫坐標縮短為原來的一半;
得到再把縱坐標伸長為原來的4倍,得到
故答案為:
【解析】【答案】根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)則對函數(shù)的解析式進行變換即可;由題設(shè)條件知,本題的變換涉及到了平移變換,周期變換,振幅變換.
7、略
【分析】
當x≤0時;y=2x+3≤3;
當0<x≤1時;3<y=x+3≤4;
當x>1時;y=-x+5<4;
綜上;得函數(shù)的最大值為:4.
故答案為:4.
【解析】【答案】先求出各段函數(shù)值范圍;然后取其最大值即可.
8、略
【分析】【解析】解:因為直線的方程為則與垂直的直線的斜率為-則傾斜角為【解析】【答案】9、略
【分析】解:由題意知;3x+1=7;
∴x=2;
∴B中的元素7在A中的與之對應(yīng)的元素是2;
故答案為2.
根據(jù)映射的定義;像3x+1的值是7,求出x值即為所求.
本題考查映射的概念、像與原像的定義.按對應(yīng)法則f:x→3x+1,x是原像,3x+1是像,本題屬于已知像,求原像.【解析】210、略
【分析】解:由數(shù)表知,=×(0+1+3+4)=2;
=×(2.2+4.3+4.8+6.7)=4.5;
代入回歸直線方程y=2x+a中;
得4.5=2×2+a;
解得a=0.5.
故答案為:0.5.
由數(shù)表求得代入回歸直線方程即可求得答案.
本題考查了線性回歸方程恒過樣本中心點的應(yīng)用問題,是基礎(chǔ)題目.【解析】0.5三、證明題(共8題,共16分)11、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.12、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.13、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點;
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.14、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.15、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.16、略
【分析】【分析】首先作CD關(guān)于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.17、略
【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點.
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=18、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保材料研發(fā)生產(chǎn)合同
- 二零二五年度餐飲店廚師團隊培訓(xùn)合同
- 二零二五年度駕駛員安全駕駛技能培訓(xùn)與責(zé)任合同
- 二零二五年度高端研發(fā)人員聘用合同(智能制造專項)
- 二零二五沈陽正規(guī)網(wǎng)絡(luò)安全防護生意合作合同
- 二零二五年度雞場租賃合同(含養(yǎng)殖廢棄物資源化利用與環(huán)保法律法規(guī))
- 二零二五穩(wěn)崗補貼協(xié)議書-金融服務(wù)業(yè)員工激勵合同
- 北京市2025年度房屋出租代理及客戶反饋改進合同
- 烘焙店員工勞動合同(2025)附員工勞動爭議調(diào)解協(xié)議
- 白酒企業(yè)品牌保護與維權(quán)合作合同2025年度
- 專題6.8 一次函數(shù)章末測試卷(拔尖卷)(學(xué)生版)八年級數(shù)學(xué)上冊舉一反三系列(蘇科版)
- GB/T 4167-2024砝碼
- 老年人視覺障礙護理
- 《腦梗塞的健康教育》課件
- 《請柬及邀請函》課件
- 遼寧省普通高中2024-2025學(xué)年高一上學(xué)期12月聯(lián)合考試語文試題(含答案)
- 《個體防護裝備安全管理規(guī)范AQ 6111-2023》知識培訓(xùn)
- 青海原子城的課程設(shè)計
- 2023年年北京市各區(qū)初三語文一模分類試題匯編 - 作文
- 常州大學(xué)《新媒體文案創(chuàng)作與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 麻醉蘇醒期躁動患者護理
評論
0/150
提交評論