版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年西師新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、已知曲線上一點(diǎn)P(1,),則過(guò)點(diǎn)P的切線的傾斜角為()A.30°B.45°C.135°D.165°2、方程的實(shí)根個(gè)數(shù)是()A.3B.2C.1D.03、已知是橢圓上的一點(diǎn),是該橢圓的兩個(gè)焦點(diǎn),若的內(nèi)切圓半徑為則的值為()A.B.C.D.04、已知向量=(cos120°,sin120°),=(cos30°,sin30°),則△ABC的形狀為A.直角三角形B.鈍角三角形C.銳角三角形D.等邊三角形5、【題文】的值()A.小于B.大于C.等于D.不存在6、【題文】某高中有學(xué)生2400人,其中一、二、三年級(jí)的學(xué)生比為5:4:3,要用分層抽樣的方法從該校所有學(xué)生中抽取一個(gè)容量為120的樣本,則應(yīng)抽取一年級(jí)的學(xué)生A.50人B.40人C.30人D.20人7、已知向量=(3,﹣2),=(x,y﹣1)且∥若x,y均為正數(shù),則+的最小值是()A.24B.8C.D.評(píng)卷人得分二、填空題(共5題,共10分)8、已知中,一個(gè)圓心為M,半徑為的圓在內(nèi),沿著的邊滾動(dòng)一周回到原位。在滾動(dòng)過(guò)程中,圓M至少與的一邊相切,則點(diǎn)M到頂點(diǎn)的最短距離是,點(diǎn)M的運(yùn)動(dòng)軌跡的周長(zhǎng)是。9、【題文】某公益社團(tuán)有中學(xué)生36人,大學(xué)生24人,研究生16人,現(xiàn)用分層抽樣的方法從中抽取容量為19的樣本,則抽取的中學(xué)生的人數(shù)是____.10、【題文】11、已知向量=(3,2),=(﹣12,x﹣4),且∥則實(shí)數(shù)x=____.12、在研究吸煙與患肺癌的關(guān)系中,通過(guò)收集數(shù)據(jù)、整理分析數(shù)據(jù)得“有99%以上的把握認(rèn)為吸煙與患肺癌有關(guān)”.對(duì)以下說(shuō)法:(1)在100個(gè)吸煙者中至少有99人患有肺癌;(2)某個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺癌;(3)在100個(gè)吸煙者中一定有患肺癌的人;(4)在100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒(méi)有.其中正確的是______.(填上所有正確的序號(hào))評(píng)卷人得分三、作圖題(共8題,共16分)13、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
14、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)15、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)16、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
17、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)18、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)19、分別畫(huà)一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、計(jì)算題(共4題,共40分)20、如圖,正三角形ABC的邊長(zhǎng)為2,M是BC邊上的中點(diǎn),P是AC邊上的一個(gè)動(dòng)點(diǎn),求PB+PM的最小值.21、1.(本小題滿分12分)已知函數(shù)在處取得極值.(1)求實(shí)數(shù)a的值;(2)若關(guān)于x的方程在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;(3)證明:(參考數(shù)據(jù):ln2≈0.6931).22、1.(本小題滿分12分)分別是橢圓的左右焦點(diǎn),直線與C相交于A,B兩點(diǎn)(1)直線斜率為1且過(guò)點(diǎn)若成等差數(shù)列,求值(2)若直線且求值.23、解關(guān)于x的不等式ax2﹣(2a+2)x+4>0.評(píng)卷人得分五、綜合題(共2題,共4分)24、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)AB,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.25、(2015·安徽)設(shè)橢圓E的方程為+=1(ab0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足=2直線OM的斜率為參考答案一、選擇題(共7題,共14分)1、B【分析】試題分析:所以由導(dǎo)數(shù)的幾何意義可得在點(diǎn)處切線的斜率為1,設(shè)此切線的傾斜角為即因?yàn)樗怨蔅正確??键c(diǎn):1導(dǎo)數(shù)的幾何意義;2斜率的定義?!窘馕觥俊敬鸢浮緽2、C【分析】【解析】試題分析:直接解此方程有一定的困難,要轉(zhuǎn)化成圖解法,由x3-6x2+9x-10=0得,x3=6x2-9x+10,分別作出函數(shù)y=x3和y=6x2-9x+10,的圖象,觀察兩個(gè)函數(shù)的圖象的交點(diǎn)情況即可.解;由由x3-6x2+9x-10=0得,x3=6x2-9x+10,畫(huà)圖,由圖得一個(gè)交點(diǎn).故選C考點(diǎn):零點(diǎn)問(wèn)題【解析】【答案】C3、B【分析】【解析】試題分析:因?yàn)槭菣E圓上的一點(diǎn),所以由于的內(nèi)切圓半徑為所以而而在中,利用余弦定理可得兩式結(jié)合可以求出所以考點(diǎn):本小題主要考查內(nèi)切圓半徑與三邊的關(guān)系、橢圓上點(diǎn)的性質(zhì)、橢圓中基本量之間的運(yùn)算、三角形面積公式、同角三角函數(shù)的基本關(guān)系式和余弦定理的綜合應(yīng)用,考查學(xué)生綜合運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力和運(yùn)算求解能力.【解析】【答案】B4、A【分析】【解析】
因?yàn)锳B=AC,且故三角形為直角三角形,選A【解析】【答案】A5、A【分析】【解析】
試題分析:因?yàn)?弧度大約等于57度,2弧度大約等于114度,所以
又因?yàn)?弧度小于弧度,在第二象限,所以又4弧度小于弧度,大于弧度,在第三象限,所以所以
考點(diǎn):三角函數(shù)的符號(hào)。
點(diǎn)評(píng):本題主要考查三角函數(shù)的符號(hào)問(wèn)題,常常根據(jù)角所在的象限來(lái)判斷函數(shù)值的正負(fù).【解析】【答案】A6、A【分析】【解析】略【解析】【答案】A7、B【分析】【解答】解:∵∥∴﹣2x﹣3(y﹣1)=0;
化簡(jiǎn)得2x+3y=3;
∴=(+)×(2x+3y)
=(6++6)≥(12+2)=8;
當(dāng)且僅當(dāng)2x=3y=時(shí);等號(hào)成立;
∴的最小值是8.
故選:B.
【分析】根據(jù)向量共線定理列出方程,得出2x+3y=3,再求的最小值即可.二、填空題(共5題,共10分)8、略
【分析】【解析】
因?yàn)槔脠A在直角三角形內(nèi)滾動(dòng)的運(yùn)行軌跡可知,當(dāng)圓m運(yùn)行到點(diǎn)C時(shí),此時(shí)點(diǎn)M到三角形ABC的頂點(diǎn)的距離最短,且為而點(diǎn)M的運(yùn)行軌跡也就是圓心所經(jīng)過(guò)的路徑是一個(gè)與三角形相似的三角形,并且周長(zhǎng)為6【解析】【答案】9、略
【分析】【解析】【解析】【答案】910、略
【分析】【解析】略【解析】【答案】120°11、-4【分析】【解答】解:∵∥∴﹣12×2﹣3(x﹣4)=0;
解得x=﹣4.
故答案為:﹣4.
【分析】利用向量共線定理即可得出.12、略
【分析】解:有99%以上的把握認(rèn)為吸煙與患肺癌有關(guān)。
是指吸煙與患肺癌有關(guān)的正確的可能性;
(1)在100個(gè)吸煙者中至少有99人患有肺癌不正確;
(2)某個(gè)人吸煙;那么這個(gè)人有99%的概率患有肺癌也不正確;
(3)在100個(gè)吸煙者中一定有患肺癌的人也不正確;
(4)在100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒(méi)有是正確的.
故答案為:(4).
有99%以上的把握認(rèn)為吸煙與患肺癌有關(guān)是指吸煙與患肺癌有關(guān)的正確的可能性;從而判斷.
本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用,屬于基礎(chǔ)題.【解析】(4)三、作圖題(共8題,共16分)13、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
14、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.15、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最??;
理由是兩點(diǎn)之間,線段最短.16、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
17、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.18、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最?。?/p>
理由是兩點(diǎn)之間,線段最短.19、解:畫(huà)三棱錐可分三步完成。
第一步:畫(huà)底面﹣﹣畫(huà)一個(gè)三角形;
第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);
第三步:畫(huà)側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).
畫(huà)四棱可分三步完成。
第一步:畫(huà)一個(gè)四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫(huà)三棱錐和畫(huà)四棱臺(tái)都是需要先畫(huà)底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫(huà)四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、計(jì)算題(共4題,共40分)20、略
【分析】【分析】作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長(zhǎng)就是PB+PM的最小值.【解析】【解答】解:如圖;作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)E,連接EP;EB、EM、EC;
則PB+PM=PE+PM;
因此EM的長(zhǎng)就是PB+PM的最小值.
從點(diǎn)M作MF⊥BE;垂足為F;
因?yàn)锽C=2;
所以BM=1,BE=2=2.
因?yàn)椤螹BF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.21、略
【分析】【解析】
(1)f'(x)=1+,由題意,得f'(1)=0Ta=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0設(shè)g(x)=x2-3x+lnx+b(x>0)則g'(x)=2x-3+=4分當(dāng)x變化時(shí),g'(x),g(x)的變化情況如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗極大值↘極小值↗b-2+ln2當(dāng)x=1時(shí),g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根高考+資-源-網(wǎng)由TT+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)設(shè)Φ(x)=lnx-(x2-1)則Φ'(x)=-=當(dāng)x≥2時(shí),Φ'(x)<0T函數(shù)Φ(x)在[2,+∞)上是減函數(shù),∴Φ(x)≤Φ(2)=ln2-<0Tlnx<(x2-1)∴當(dāng)x≥2時(shí),∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.22、略
【分析】【解析】
(1)設(shè)橢圓半焦距為c,則方程為設(shè)成等差數(shù)列由得高考+資-源-網(wǎng)解得6分(2)聯(lián)立直線與橢圓方程:帶入得12分【解析】【答案】(1)(2)23、解:不等式ax2﹣(2a+2)x+4>0;
因式分解得:(ax﹣2)(x﹣2)>0;
若a=0;不等式化為﹣2(x﹣2)>0,則解集為{x|x<2};
若a≠0時(shí),方程(ax﹣2)(x﹣2)=0的兩根分別為2;
①若a<0,則<2,此時(shí)解集為{x|<x<2};
②若0<a<1,則>2,此時(shí)解集為{x|x<2或x>};
③若a=1,則不等式化為(x﹣2)2>0;此時(shí)解集為{x|x≠2};
④若a>1,則<2,此時(shí)解集為{x|x>2或x<}【分析】【分析】已知不等式左邊分解因式后,分a=0與a≠0兩種情況求出解集即可.五、綜合題(共2題,共4分)24、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);
設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長(zhǎng)度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長(zhǎng)定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:
(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點(diǎn)D.
∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點(diǎn)之間;線段最短”的原理可知:
此時(shí)AD+CD最小;點(diǎn)D的位置即為所求.(5分)
設(shè)直線BC的解析式為y=kx+b;
由直線BC過(guò)點(diǎn)(3;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度老舊建筑改造工程安裝施工安全協(xié)議3篇
- 二零二五年度抵債協(xié)議:債務(wù)清償與資產(chǎn)重組專項(xiàng)合同3篇
- 二零二五年新材料研發(fā)股權(quán)出資轉(zhuǎn)讓與產(chǎn)業(yè)應(yīng)用協(xié)議3篇
- 二零二五年智能監(jiān)控系統(tǒng)深度維護(hù)與更新服務(wù)合同3篇
- 二零二五年物業(yè)服務(wù)合同履行管理協(xié)議2篇
- 二零二五年度環(huán)保技術(shù)研發(fā)與職業(yè)健康安全服務(wù)合同3篇
- 二零二五年度火鍋串串香餐廳承包經(jīng)營(yíng)合同樣本3篇
- 二零二五年橙子種植基地建設(shè)與種植管理合同3篇
- 二零二五年結(jié)對(duì)共建網(wǎng)絡(luò)安全防護(hù)合同3篇
- 二零二五年度高速公路建設(shè)工程技術(shù)勘察執(zhí)行合同2篇
- 初三九年級(jí)英語(yǔ)英語(yǔ)英語(yǔ)語(yǔ)法填空附答案附解析
- 呆滯品管理制度范本(3篇)
- GB/T 42623-2023安裝于辦公、旅館和住宅建筑的乘客電梯的配置和選擇
- 夸美紐斯《大教學(xué)論》
- PMC主管工作計(jì)劃工作總結(jié)述職報(bào)告PPT模板下載
- 放射治療技術(shù)常用放射治療設(shè)備課件
- 《計(jì)算機(jī)組成原理》武漢大學(xué)2023級(jí)期末考試試題答案
- 廣東廣州白云區(qū)2021學(xué)年第二學(xué)期期末學(xué)生學(xué)業(yè)質(zhì)量診斷調(diào)研六年級(jí)語(yǔ)文(含答案)
- 食品欺詐預(yù)防控制程序分享
- 員工辭職報(bào)告下載(6篇)
- 建筑節(jié)能PPT 課件
評(píng)論
0/150
提交評(píng)論