河北交通職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
河北交通職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
河北交通職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
河北交通職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
河北交通職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁(yè),共3頁(yè)河北交通職業(yè)技術(shù)學(xué)院

《數(shù)據(jù)分析與可視化實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)預(yù)處理中,處理異常值是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含員工工資的數(shù)據(jù)集,以下關(guān)于異常值處理的描述,正確的是:()A.直接刪除異常值,不進(jìn)行任何進(jìn)一步的分析B.異常值一定是錯(cuò)誤的數(shù)據(jù),必須修正C.分析異常值產(chǎn)生的原因,根據(jù)具體情況決定處理方式D.異常值對(duì)數(shù)據(jù)分析沒有任何影響,無需關(guān)注2、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的比例關(guān)系,以下哪種圖表較為合適?()A.柱狀圖B.餅圖C.折線圖D.箱線圖3、在數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率,用于衡量規(guī)則的普遍性B.置信度表示在包含前提條件的事務(wù)中同時(shí)包含結(jié)論的概率,用于衡量規(guī)則的可靠性C.通常情況下,支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只關(guān)注支持度或置信度其中一個(gè)指標(biāo)就可以確定有效的關(guān)聯(lián)規(guī)則,另一個(gè)指標(biāo)可以忽略4、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個(gè)PB級(jí)別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項(xiàng)是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲(chǔ)數(shù)據(jù),能夠擴(kuò)展到大規(guī)模的集群B.MapReduce編程模型可以實(shí)現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實(shí)時(shí)處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架5、對(duì)于一組具有明顯層次結(jié)構(gòu)的數(shù)據(jù),以下哪種數(shù)據(jù)分析方法較為合適?()A.層次聚類B.K-Means聚類C.密度聚類D.均值漂移聚類6、在進(jìn)行數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲(chǔ)和組織方式。假設(shè)要為一個(gè)大型企業(yè)構(gòu)建數(shù)據(jù)倉(cāng)庫(kù),以支持復(fù)雜的查詢和分析需求。以下哪種數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)在處理大規(guī)模企業(yè)數(shù)據(jù)時(shí)更具擴(kuò)展性和性能優(yōu)勢(shì)?()A.星型架構(gòu)B.雪花架構(gòu)C.混合架構(gòu)D.以上架構(gòu)沒有區(qū)別7、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性8、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,若要存儲(chǔ)學(xué)生的課程成績(jī),以下哪種數(shù)據(jù)類型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型9、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)不符合正態(tài)分布,以下哪種統(tǒng)計(jì)方法可能不再適用?()A.t檢驗(yàn)B.方差分析C.線性回歸D.以上都是10、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況至關(guān)重要。假設(shè)要在一組生產(chǎn)數(shù)據(jù)中檢測(cè)異常值,以下關(guān)于異常值檢測(cè)方法的描述,正確的是:()A.僅通過觀察數(shù)據(jù)的分布,主觀判斷異常值,不使用任何定量方法B.采用單一的異常值檢測(cè)算法,不考慮其局限性和數(shù)據(jù)特點(diǎn)C.綜合運(yùn)用多種異常值檢測(cè)方法,結(jié)合數(shù)據(jù)的領(lǐng)域知識(shí)和業(yè)務(wù)背景,對(duì)檢測(cè)結(jié)果進(jìn)行評(píng)估和解釋D.忽略異常值的存在,認(rèn)為它們對(duì)數(shù)據(jù)分析結(jié)果沒有影響11、在數(shù)據(jù)挖掘中,關(guān)聯(lián)規(guī)則挖掘是一種常見的方法。以下關(guān)于關(guān)聯(lián)規(guī)則的描述,正確的是:()A.關(guān)聯(lián)規(guī)則只能用于發(fā)現(xiàn)商品之間的購(gòu)買關(guān)聯(lián)B.支持度表示同時(shí)購(gòu)買兩種商品的顧客比例C.置信度越高,說明規(guī)則的可靠性越強(qiáng)D.提升度小于1時(shí),表示兩種商品存在負(fù)相關(guān)關(guān)系12、假設(shè)要分析某電商平臺(tái)用戶的購(gòu)買行為隨時(shí)間的變化趨勢(shì),以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖13、數(shù)據(jù)分析中的文本分類任務(wù)可以使用多種機(jī)器學(xué)習(xí)算法。假設(shè)我們要對(duì)大量的新聞文章進(jìn)行分類,以下哪種算法在處理文本分類時(shí)可能需要更多的特征工程工作?()A.決策樹B.支持向量機(jī)C.樸素貝葉斯D.隨機(jī)森林14、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購(gòu)買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無需進(jìn)一步驗(yàn)證和解釋15、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹狀圖二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)在處理高維數(shù)據(jù)時(shí),常用的降維方法除了主成分分析還有哪些?解釋這些方法的工作原理和適用情況。2、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的元數(shù)據(jù)管理,說明元數(shù)據(jù)的定義、類型和重要性,以及如何有效地管理元數(shù)據(jù)。3、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)審計(jì)和監(jiān)控,說明如何確保數(shù)據(jù)的完整性、準(zhǔn)確性和一致性,以及及時(shí)發(fā)現(xiàn)數(shù)據(jù)異常。4、(本題5分)解釋數(shù)據(jù)融合的概念和方法,說明在多源數(shù)據(jù)環(huán)境下如何進(jìn)行數(shù)據(jù)融合,以獲取更全面和準(zhǔn)確的信息。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)制造業(yè)企業(yè)在生產(chǎn)過程中產(chǎn)生了大量的工藝、質(zhì)量和設(shè)備運(yùn)行數(shù)據(jù)。以某汽車制造企業(yè)為例,論述如何通過數(shù)據(jù)分析來實(shí)現(xiàn)生產(chǎn)過程的優(yōu)化,如質(zhì)量控制、生產(chǎn)排程、設(shè)備維護(hù)預(yù)測(cè),以及如何利用數(shù)據(jù)驅(qū)動(dòng)的方法持續(xù)改進(jìn)生產(chǎn)效率和產(chǎn)品質(zhì)量。2、(本題5分)在線旅游平臺(tái)的目的地推薦可以基于用戶偏好和歷史數(shù)據(jù)進(jìn)行優(yōu)化。請(qǐng)論述如何通過數(shù)據(jù)分析來實(shí)現(xiàn)精準(zhǔn)的目的地推薦、行程規(guī)劃和個(gè)性化的旅游體驗(yàn),以及如何處理數(shù)據(jù)的多樣性和復(fù)雜性。3、(本題5分)探討在社交媒體的廣告投放中,如何通過數(shù)據(jù)分析精準(zhǔn)定位目標(biāo)受眾,優(yōu)化廣告內(nèi)容和投放策略,提高廣告效果和投資回報(bào)率。4、(本題5分)旅游業(yè)依賴數(shù)據(jù)分析來了解游客需求和優(yōu)化旅游服務(wù)。請(qǐng)?jiān)敿?xì)探討如何運(yùn)用數(shù)據(jù)分析來預(yù)測(cè)旅游需求、優(yōu)化旅游線路設(shè)計(jì)和提升游客滿意度,分析在跨區(qū)域和多源數(shù)據(jù)整合過程中可能出現(xiàn)的問題及解決辦法,同時(shí)考慮文化和地域差異對(duì)數(shù)據(jù)分析結(jié)果的影響。5、(本題5分)分析在在線旅游平臺(tái)的用戶評(píng)論數(shù)據(jù)中,如何運(yùn)用情感分析了解用戶對(duì)旅游目的地和服務(wù)的滿意度,改進(jìn)旅游產(chǎn)品和服務(wù)。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某電商直播平臺(tái)存有主播的直播數(shù)據(jù),如直播時(shí)長(zhǎng)、觀看人數(shù)、商品銷售額、粉絲互動(dòng)等。分析主播的直播時(shí)長(zhǎng)與商品銷售額之間的相關(guān)性以及粉絲互動(dòng)的影響。2、(本題10分)某游戲公司記錄了玩家的游戲行為、充值記錄、在線時(shí)長(zhǎng)等數(shù)據(jù)。探討如何利用這些數(shù)據(jù)提高游戲的用戶留

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論