版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四、二次曲面第三節(jié)一、曲面方程的概念二、旋轉(zhuǎn)曲面
三、柱面曲面及其方程第八章一、曲面方程的概念求到兩定點(diǎn)A(1,2,3)
和B(2,-1,4)等距離的點(diǎn)的化簡得即說明:動(dòng)點(diǎn)軌跡為線段
AB的垂直平分面.引例:顯然在此平面上的點(diǎn)的坐標(biāo)都滿足此方程,不在此平面上的點(diǎn)的坐標(biāo)不滿足此方程.解:設(shè)軌跡上的動(dòng)點(diǎn)為軌跡方程.
定義1.如果曲面
S
與方程
F(x,y,z)=0有下述關(guān)系:(1)曲面
S上的任意點(diǎn)的坐標(biāo)都滿足此方程則F(x,y,z)=0
叫做曲面
S
的方程,曲面S叫做方程F(x,y,z)=0的圖形.兩個(gè)基本問題:(1)已知一曲面作為點(diǎn)的幾何軌跡時(shí),(2)不在曲面S上的點(diǎn)的坐標(biāo)不滿足此方程求曲面方程.(2)已知方程時(shí),研究它所表示的幾何形狀(必要時(shí)需作圖).例2.研究方程解:
配方得可見此方程表示一個(gè)球面說明:如下形式的三元二次方程
(A≠0)都可通過配方研究它的圖形.其圖形可能是的曲面.表示怎樣半徑為球心為一個(gè)球面,或點(diǎn),或虛軌跡.定義2.一條平面曲線二、旋轉(zhuǎn)曲面
繞其平面上一條定直線旋轉(zhuǎn)一周所形成的曲面叫做旋轉(zhuǎn)曲面.該定直線稱為旋轉(zhuǎn)軸.例如:建立yOz面上曲線C
繞
z
軸旋轉(zhuǎn)所成曲面的方程:故旋轉(zhuǎn)曲面方程為當(dāng)繞
z軸旋轉(zhuǎn)時(shí),若點(diǎn)給定yOz
面上曲線
C:則有則有該點(diǎn)轉(zhuǎn)到思考:當(dāng)曲線C繞y軸旋轉(zhuǎn)時(shí),方程如何?例3.試建立頂點(diǎn)在原點(diǎn),旋轉(zhuǎn)軸為z軸,半頂角為的圓錐面方程.解:在yOz面上直線L的方程為繞z
軸旋轉(zhuǎn)時(shí),圓錐面的方程為兩邊平方例4.
求坐標(biāo)面xOz
上的雙曲線分別繞
x軸和
z
軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)曲面方程.解:繞
x
軸旋轉(zhuǎn)繞
z
軸旋轉(zhuǎn)這兩種曲面都叫做旋轉(zhuǎn)雙曲面(雙葉、單葉).所成曲面方程為所成曲面方程為三、柱面引例.分析方程表示怎樣的曲面.的坐標(biāo)也滿足方程解:在
xOy面上,表示圓C,沿圓周C平行于z軸的一切直線所形成的曲面稱為圓故在空間過此點(diǎn)作柱面.對任意
z,平行z
軸的直線
l,表示圓柱面在圓C上任取一點(diǎn)其上所有點(diǎn)的坐標(biāo)都滿足此方程,定義3.平行定直線并沿定曲線C移動(dòng)的直線l形成的軌跡叫做柱面.
表示拋物柱面,母線平行于z軸;準(zhǔn)線為xOy面上的拋物線.
z軸的橢圓柱面.
z軸的平面.
表示母線平行于(且z
軸在平面上)表示母線平行于C叫做準(zhǔn)線,l
叫做母線.一般地,在三維空間柱面,柱面,平行于x
軸;平行于
y
軸;平行于
z
軸;準(zhǔn)線xOz
面上的曲線l3.母線柱面,準(zhǔn)線
xOy
面上的曲線l1.母線準(zhǔn)線
yOz面上的曲線l2.母線四、二次曲面三元二次方程適當(dāng)選取直角坐標(biāo)系可得它們的標(biāo)準(zhǔn)方程,下面僅就幾種常見標(biāo)準(zhǔn)型的特點(diǎn)進(jìn)行介紹.研究二次曲面特性的基本方法:截痕法、*伸縮變形法其基本類型有:橢球面、拋物面、雙曲面、錐面的圖形統(tǒng)稱為二次曲面.(二次項(xiàng)系數(shù)不全為0)1.橢球面(1)范圍:(2)與坐標(biāo)面的交線:橢圓與的交線為橢圓:(4)當(dāng)a=b時(shí)為旋轉(zhuǎn)橢球面;同樣的截痕及也為橢圓.當(dāng)a=b=c時(shí)為球面.(3)截痕:為正數(shù))2.拋物面(1)橢圓拋物面(p,q
同號)(2)雙曲拋物面(鞍形曲面)(p,q同號)特別,當(dāng)p=q時(shí)為繞z軸的旋轉(zhuǎn)拋物面.(2)雙葉雙曲面二者的區(qū)別:單葉雙曲面雙葉雙曲面P183.雙曲面(1)單葉雙曲面4.橢圓錐面橢圓在平面x=0或y=0上的截痕為過原點(diǎn)的兩直線.可以證明,橢圓①上任一點(diǎn)與原點(diǎn)的連線均在曲面上.①(橢圓錐面也可由圓錐面經(jīng)x或y方向的伸縮變換得到,見P28)內(nèi)容小結(jié)1.空間曲面三元方程球面旋轉(zhuǎn)曲面如,曲線繞z軸的旋轉(zhuǎn)曲面:
柱面如,曲面表示母線平行z軸的柱面.又如,橢圓柱面,雙曲柱面,拋物柱面等.2.二次曲面三元二次方程橢球面拋物面:橢圓拋物面雙曲拋物面雙曲面:單葉雙曲面雙葉雙曲面橢圓錐面:斜率為1的直線平面解析幾何中空間解析幾何中方程平行于y軸的直線平行于yOz
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度美甲店品牌形象設(shè)計(jì)及宣傳推廣合同3篇
- 離婚制度下的證據(jù)收集:2025年度離婚案件證據(jù)標(biāo)準(zhǔn)合同3篇
- 2025年度樓頂廣告牌租賃期廣告內(nèi)容審核與發(fā)布合同4篇
- 年度新型鋁基軸瓦材料戰(zhàn)略市場規(guī)劃報(bào)告
- 二零二五版液化天然氣儲(chǔ)備基地建設(shè)合同3篇
- 2024版建設(shè)工程用扣件買賣合同
- 杭州市展覽館租賃合同
- 建筑工程資金居間存款合同
- 二零二五年度數(shù)據(jù)中心場物業(yè)管理與能耗管理合同4篇
- 幽門螺桿菌感染與胰腺癌關(guān)系的meta分析
- 物業(yè)民法典知識培訓(xùn)課件
- 2023年初中畢業(yè)生信息技術(shù)中考知識點(diǎn)詳解
- 《萬方數(shù)據(jù)資源介紹》課件
- 第一章-地震工程學(xué)概論
- 2024年浙江省中考數(shù)學(xué)試題及答案
- 2025屆江蘇省南京高考?xì)v史一模試卷含解析
- 浙江省金華市金東區(qū)2022-2024年中考二模英語試題匯編:任務(wù)型閱讀
- 青島版(五四制)四年級數(shù)學(xué)下冊全冊課件
- 大健康行業(yè)研究課件
- 租賃汽車可行性報(bào)告
- 計(jì)算機(jī)輔助設(shè)計(jì)AutoCAD繪圖-課程教案
評論
0/150
提交評論