![2024-2025學(xué)年山東省菏澤市高一上學(xué)期期末數(shù)學(xué)質(zhì)量檢測試題(附解析)_第1頁](http://file4.renrendoc.com/view6/M02/22/0E/wKhkGWeGfbWAEPBtAAFa-wOJwpA575.jpg)
![2024-2025學(xué)年山東省菏澤市高一上學(xué)期期末數(shù)學(xué)質(zhì)量檢測試題(附解析)_第2頁](http://file4.renrendoc.com/view6/M02/22/0E/wKhkGWeGfbWAEPBtAAFa-wOJwpA5752.jpg)
![2024-2025學(xué)年山東省菏澤市高一上學(xué)期期末數(shù)學(xué)質(zhì)量檢測試題(附解析)_第3頁](http://file4.renrendoc.com/view6/M02/22/0E/wKhkGWeGfbWAEPBtAAFa-wOJwpA5753.jpg)
![2024-2025學(xué)年山東省菏澤市高一上學(xué)期期末數(shù)學(xué)質(zhì)量檢測試題(附解析)_第4頁](http://file4.renrendoc.com/view6/M02/22/0E/wKhkGWeGfbWAEPBtAAFa-wOJwpA5754.jpg)
![2024-2025學(xué)年山東省菏澤市高一上學(xué)期期末數(shù)學(xué)質(zhì)量檢測試題(附解析)_第5頁](http://file4.renrendoc.com/view6/M02/22/0E/wKhkGWeGfbWAEPBtAAFa-wOJwpA5755.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學(xué)年山東省菏澤市高一上學(xué)期期末數(shù)學(xué)質(zhì)量檢測試題一、單選題(本大題共8小題)1.(
)A. B. C. D.2.為了得到函數(shù)的圖象,只要把函數(shù)圖象上所有的點(
)A.橫坐標伸長到原來的2倍,縱坐標不變B.橫坐標縮短到原來的倍,縱坐標不變C.縱坐標伸長到原來的2倍,橫坐標不變D.縱坐標縮短到原來的倍,橫坐標不變3.已知,則下列不等式成立的是(
)A. B.C. D.4.集合,,,則集合中的元素個數(shù)為(
)A. B. C. D.5.“”是“”成立的.A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.已知,都是銳角,,,則(
)A. B. C. D.7.定義在上的函數(shù)滿足,當時,,則下列各式正確的是(
)A. B.C. D.8.已知,,則(
)A. B. C. D.二、多選題(本大題共4小題)9.英國數(shù)學(xué)家哈利奧特最先使用“”和“”符號,并逐漸被數(shù)學(xué)界接受,不等號的引入對不等式的發(fā)展影響深遠.已知,,則下列不等式一定成立的有(
)A. B. C. D.10.已知為第一象限角,,則下列各式正確的有(
)A. B.C. D.11.已知指數(shù)函數(shù),,(,且,),且,.則下列結(jié)論正確的有(
)A.,B.若,則一定有C.若,則D.若,,則的最大值為12.已知函數(shù)對任意實數(shù)、都滿足,且,以下結(jié)論正確的有(
)A. B.是偶函數(shù)C.是奇函數(shù) D.三、填空題(本大題共4小題)13.已知函數(shù)的定義域為,則實數(shù)的取值范圍是.14.已知,當時,取得最大值,則.15.已知,則.16.若、、、均為正實數(shù),則的最小值為.四、解答題(本大題共6小題)17.求下列各式的值:(1);(2).18.已知,且,求下列各式的值:(1);(2).19.已知(1)寫出函數(shù)的單調(diào)區(qū)間;(2)當函數(shù)有兩個零點時,求的取值范圍;(3)求的解析式.20.如圖,任意角的終邊與以為圓心2為半徑的圓相交于點,過作軸的垂線,垂足為,記的面積為(規(guī)定當點落在坐標軸上時,).(1)求的解析式;(2)求取最大值時的值;(3)求的單調(diào)遞減區(qū)間.21.已知函數(shù)的部分圖象如圖所示.(1)求的解析式;(2)求在上的最大值和最小值;(3)若在區(qū)間上恰有兩個零點、,求.22.已知.(1)當時,時,求的取值范圍;(2)對任意,且,有,求的取值范圍;(3),的最小值為,求的最大值.
答案1.【正確答案】C【分析】利用誘導(dǎo)公式化簡可得出所求代數(shù)式的值.【詳解】.故選:C.2.【正確答案】B【分析】直接利用三角函數(shù)伸縮變換法則得到答案.【詳解】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點橫坐標縮短到原來的倍,縱坐標不變.故選:B3.【正確答案】D【分析】由基本不等式以及作差法即可求解.【詳解】由題意,則,即,由基本不等式得,又,即,所以.故選:D.4.【正確答案】B【分析】解不等式,得出整數(shù)的取值,即可得解.【詳解】解不等式,可得,所以,整數(shù)的取值有、、,又因為集合,,則,即集合中的元素個數(shù)為.故選:B.5.【正確答案】C【分析】由集合的子集的定義和充要條件的定義推導(dǎo)即可.【詳解】解:,則;反之,若,也有,所以“”是“”成立的充要條件.故答案為C.本題考查簡易邏輯中充要條件的證明,對基礎(chǔ)知識扎實的掌握是解題的關(guān)鍵,屬于基礎(chǔ)題.6.【正確答案】B【分析】利用同角三角函數(shù)關(guān)系得到和,再利用湊角法,正弦和角公式求出答案.【詳解】因為,都是銳角,所以,故,又,所以,所以.故選:B7.【正確答案】A【分析】分析可知,函數(shù)的圖象關(guān)于直線對稱,函數(shù)在上單調(diào)遞增,由對稱性得出,,結(jié)合函數(shù)在上的單調(diào)性可得出結(jié)論.【詳解】因為定義在上的函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對稱,當時,,則函數(shù)在上單調(diào)遞增,因為,,且,則,即,故選:A.8.【正確答案】D【分析】由同角三角函數(shù)的基本關(guān)系可得出關(guān)于、的方程組,解出這兩個量的值,可得出的值,再利用兩角和的正切公式可求得的值.【詳解】由已知可得,解得,所以,,故.故選:D.9.【正確答案】ABD【分析】利用不等式的基本性質(zhì)逐項判斷,可得出合適的選項.【詳解】因為,,對于A選項,由不等式的基本性質(zhì)可得,A對;對于B選項,,,由不等式的基本性質(zhì)可得,B對;對于C選項,因為,由不等式的基本性質(zhì)可得,C錯;對于D選項,由不等式的基本性質(zhì)可得,,即,D對.故選:ABD.10.【正確答案】AC【分析】利用已知和求出、,逐項判斷可得答案.【詳解】由得,代入得,解得或,因為為第一象限角,所以,,所以,,,.故選:AC.11.【正確答案】AC【分析】利用已知條件求出、的值,可判斷A選項;利用對數(shù)式與指數(shù)式的互化可判斷B選項;由指數(shù)式與對數(shù)式的互化、換底公式可判斷C選項;利用二次函數(shù)的基本性質(zhì)可判斷D選項.【詳解】對于A選項,因為指數(shù)函數(shù),,(,且,),則,可得,由可得,則,所以,,,A對;對于B選項,由,可得,可得出,即,當時,則,此時,,當時,則,則,則.B錯;對于C選項,由,可得,設(shè),則,所以,,,,所以,,C對;對于D選項,,因為,令,令,其中,則函數(shù)在上為減函數(shù),在上為增函數(shù),當時,;當時,,所以,的最大值為,D錯.故選:AC.12.【正確答案】ABD【分析】令可求得的值,令,可求得的值,可判斷A選項;推導(dǎo)出為偶函數(shù),且,可判斷B選項;由結(jié)合函數(shù)的奇偶性可判斷C選項;利用函數(shù)的周期性可判斷D選項.【詳解】對于A選項,令可得,因為,則,令,,可得,則,A對;對于B選項,令可得,所以,,故函數(shù)為偶函數(shù),令可得,即,故,因為函數(shù)為偶函數(shù),則函數(shù)為偶函數(shù),B對;對于C選項,因為,因為函數(shù)為偶函數(shù),則函數(shù)也為偶函數(shù),C錯;對于D選項,由B選項可知,函數(shù)是周期為的周期函數(shù),因為,,所以,,D對.故選:ABD.思路點睛:利用定義法判斷函數(shù)的奇偶性,步驟如下:(1)一是看定義域是否關(guān)于原點對稱,如果定義域不關(guān)于原點對稱,則該函數(shù)為非奇非偶函數(shù);(2)若函數(shù)的定義域關(guān)于原點對稱,接下來就是判斷與之間的關(guān)系;(3)下結(jié)論.13.【正確答案】【分析】由已知可得對任意的,,可得出,即可解得實數(shù)的取值范圍.【詳解】由題意可知,對任意的,,則,解得.所以,實數(shù)的取值范圍是.故答案為.14.【正確答案】/【分析】利用輔助角公式可得出,其中,,為銳角,根據(jù)題意確定與的關(guān)系,結(jié)合誘導(dǎo)公式可求得的值.【詳解】令,,其中為銳角,則,因為當時,取得最大值,則,所以,,所以,,,故.故答案為.15.【正確答案】/【分析】由對數(shù)式與指數(shù)式的互化可得出,再利用對數(shù)的運算性質(zhì)以及換底公式可求得所求代數(shù)式的值.【詳解】因為,則,所以,.故答案為.16.【正確答案】【分析】從最后兩項開始,逐次使用基本不等式,可求得所求代數(shù)式的最小值.【詳解】原式,當且僅當時,即當時,等號成立,故的最小值為,故答案為.易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.17.【正確答案】(1)7(2)【分析】(1)直接由分數(shù)指數(shù)冪的運算性質(zhì)求解即可.(2)直接由對數(shù)運算性質(zhì)求解即可.【詳解】(1)原式.(2)原式.18.【正確答案】(1)(2)【分析】(1)根據(jù)條件,利用平方關(guān)系得到,再利用誘導(dǎo)公式即可求出結(jié)果;(2)利用,再利用正弦的和差公式及,即可得出結(jié)果.【詳解】(1),且,則為第四象限角,所以,所以.(2)因為原式.19.【正確答案】(1)單調(diào)遞增區(qū)間為,;(2)(3)【分析】(1)根據(jù)的解析式及指對數(shù)函數(shù)性質(zhì)可得答案;(2)時有一解求出的范圍;時有一解求出的范圍可得答案;(3)根據(jù)定義域求出即可.【詳解】(1)函數(shù)的單調(diào)遞增區(qū)間為,;(2)當函數(shù)有兩個零點時,即有兩根.由在區(qū)間,遞增,所以,()有一解,即;,()有一解,即;綜上,所以當函數(shù)有兩個零點時;(3)時,,又,所以,即.20.【正確答案】(1)(2),(3),【分析】(1)利用三角形面積和二倍角公式得到;(2)利用整體法求出當時,最大,并求出相應(yīng)的值;(3)畫出的圖象,求出單調(diào)遞減區(qū)間.【詳解】(1)由三角函數(shù)的定義知,,所以;(2)由知,當時,最大,此時,,即,,∴最大時,,.(3)畫出的圖象如下,的周期,當時,在上為增函數(shù),在上為減函數(shù).∴的單調(diào)遞減區(qū)間為,.21.【正確答案】(1)(2)最大值為,最小值為(3)【分析】(1)由圖象可得出函數(shù)的最小正周期,可求出的值,再由結(jié)合的取值范圍可求得的值,即可得出函數(shù)的解析式;(2)由求出的取值范圍,結(jié)合正弦型函數(shù)的基本性質(zhì)可求得函數(shù)的最大值和最小值;(3)求出函數(shù)圖象在內(nèi)的對稱軸方程,可得出,得,,利用誘導(dǎo)公式可求得的值,再利用二倍角的余弦公式可求得的值.【詳解】(1)由圖象可知,函數(shù)的最小正周期滿足,則,,所以,,則,可得,因為,則,所以,,解得,因此,.(2)因為,則,所以,,即,所以的最大值為,最小值為.(3)因為,當時,,令,所以,因為在區(qū)間上恰有兩個零點、,函數(shù)圖象在區(qū)間內(nèi)的對稱軸為直線,由正弦型函數(shù)的對稱性可知,點、關(guān)于直線對稱,則,所以,由得,,所以,所以.22.【正確答案】(1)或(2)(3)1【分析】(1)將看成整體,解一個一元二次不等式即得;(2)利用參變分離法將不等式恒成立問題轉(zhuǎn)化為求對應(yīng)函數(shù)的最小值問題求解;(3)將絕對值分類討論得到分段函數(shù),分別就參數(shù)的范圍進行討論,得到,求其最大值即得.【詳解】(1)由,可得,解得或,所以或;(2)由,時恒成立則,令.則當時,由可得:,即得:(時取等號),當時,,可得:即得.(時取等號)故,因在上遞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度住宅租賃市場規(guī)范化管理合同
- 七年級下冊語文第五課測試卷部編版及答案
- 衡陽2025年湖南衡陽市民政醫(yī)院急需緊缺專業(yè)技術(shù)人才引進6人筆試歷年參考題庫附帶答案詳解
- 蘇州2025年江蘇蘇州高新區(qū)招聘新興領(lǐng)域?qū)B汓h務(wù)工作者12人筆試歷年參考題庫附帶答案詳解
- 秦皇島2024年河北秦皇島市婦幼保健院第二輪選聘工作人員9人筆試歷年參考題庫附帶答案詳解
- 甘肅2025年甘肅煤田地質(zhì)局考核招聘高層次人才3人筆試歷年參考題庫附帶答案詳解
- 溫州浙江溫州平陽縣農(nóng)業(yè)農(nóng)村局編外人員招聘筆試歷年參考題庫附帶答案詳解
- 溫州2025年浙江溫州市生態(tài)環(huán)境科學(xué)研究院招聘筆試歷年參考題庫附帶答案詳解
- 泰州2025年江蘇泰州興化市部分高中學(xué)校校園招聘教師22人筆試歷年參考題庫附帶答案詳解
- 文山云南文山市人力資源和社會保障局城鎮(zhèn)公益性崗位工作人員招聘筆試歷年參考題庫附帶答案詳解
- 2025年中國東方電氣集團有限公司招聘筆試參考題庫含答案解析
- 模具檢測知識培訓(xùn)
- 醫(yī)療健康行業(yè)保密免責協(xié)議書
- 2025年七年級下冊道德與法治主要知識點
- 第一課走進人工智能 說課稿 2023-2024學(xué)年浙教版(2023)初中信息技術(shù)八年級下冊
- 第25章 概率初步(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級上冊(含答案解析)
- 2025年交通運輸部長江口航道管理局招聘4人歷年高頻重點提升(共500題)附帶答案詳解
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測試(零模)英語 含解析
- 蘭溪市排水防澇提升雨污管網(wǎng)修復(fù)改造初步設(shè)計文本
- 2024-2030年中國永磁電機市場現(xiàn)狀分析及前景趨勢預(yù)測報告
- 翁愷C語言課件下載
評論
0/150
提交評論