廣西機(jī)電職業(yè)技術(shù)學(xué)院《Python數(shù)據(jù)挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
廣西機(jī)電職業(yè)技術(shù)學(xué)院《Python數(shù)據(jù)挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
廣西機(jī)電職業(yè)技術(shù)學(xué)院《Python數(shù)據(jù)挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
廣西機(jī)電職業(yè)技術(shù)學(xué)院《Python數(shù)據(jù)挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
廣西機(jī)電職業(yè)技術(shù)學(xué)院《Python數(shù)據(jù)挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)廣西機(jī)電職業(yè)技術(shù)學(xué)院

《Python數(shù)據(jù)挖掘?qū)嶒?yàn)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理以去除噪聲,以下哪種方法可能會(huì)被使用?()A.中值濾波B.均值濾波C.高斯濾波D.以上都是2、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問(wèn)題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私3、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類(lèi)別),以下哪種方法可以提高模型對(duì)少數(shù)類(lèi)別的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.調(diào)整分類(lèi)閾值D.以上都是4、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹(shù)狀圖5、數(shù)據(jù)分析中的回歸分析用于研究變量之間的關(guān)系。假設(shè)要探究廣告投入與產(chǎn)品銷(xiāo)售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡(jiǎn)單線(xiàn)性回歸一定能準(zhǔn)確反映兩者的關(guān)系,無(wú)需考慮其他因素B.不考慮數(shù)據(jù)的正態(tài)性和方差齊性,直接進(jìn)行回歸分析C.在進(jìn)行回歸分析前,對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和假設(shè)檢驗(yàn),選擇合適的回歸模型,并評(píng)估模型的擬合優(yōu)度和顯著性D.只關(guān)注回歸方程的系數(shù),不考慮模型的殘差和預(yù)測(cè)能力6、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,包含多個(gè)相關(guān)的特征。通過(guò)PCA降維后,如果解釋方差的比例較低,可能意味著什么?()A.降維效果較好,保留了主要信息B.丟失了較多的重要信息,需要重新考慮降維方法C.原始數(shù)據(jù)的質(zhì)量較差D.對(duì)后續(xù)的分析和建模沒(méi)有影響7、在處理缺失值時(shí),如果缺失值的比例較高且數(shù)據(jù)呈現(xiàn)一定的規(guī)律性,以下哪種方法可能較為有效?()A.基于模型的插補(bǔ)B.多重插補(bǔ)C.隨機(jī)插補(bǔ)D.以上都不是8、當(dāng)分析一個(gè)金融投資組合的績(jī)效數(shù)據(jù),包括不同資產(chǎn)的收益率、風(fēng)險(xiǎn)指標(biāo)、相關(guān)性等,以?xún)?yōu)化投資組合配置。以下哪個(gè)原則可能是在風(fēng)險(xiǎn)和收益平衡中需要首要考慮的?()A.最大化收益率B.最小化風(fēng)險(xiǎn)C.符合投資者的風(fēng)險(xiǎn)偏好D.以上都不是9、在進(jìn)行數(shù)據(jù)挖掘時(shí),分類(lèi)算法中的決策樹(shù)算法具有易于理解和解釋的優(yōu)點(diǎn)。以下哪個(gè)因素不會(huì)影響決策樹(shù)的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計(jì)算資源的大小10、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀(guān)地理解數(shù)據(jù)。假設(shè)要展示一個(gè)公司在過(guò)去十年中不同產(chǎn)品的銷(xiāo)售額變化趨勢(shì),同時(shí)要對(duì)比不同地區(qū)的銷(xiāo)售情況。以下哪種數(shù)據(jù)可視化方式最能清晰地呈現(xiàn)這些信息,便于分析和決策?()A.折線(xiàn)圖B.柱狀圖C.餅圖D.箱線(xiàn)圖11、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的方法有很多,其中數(shù)據(jù)標(biāo)準(zhǔn)化是一種常用的方法。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為具有相同尺度和單位的數(shù)值B.數(shù)據(jù)標(biāo)準(zhǔn)化可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性C.數(shù)據(jù)標(biāo)準(zhǔn)化的方法有多種,如min-max標(biāo)準(zhǔn)化、z-score標(biāo)準(zhǔn)化等D.數(shù)據(jù)標(biāo)準(zhǔn)化只適用于數(shù)值型數(shù)據(jù),對(duì)于分類(lèi)型數(shù)據(jù)無(wú)法處理12、假設(shè)要分析消費(fèi)者對(duì)新產(chǎn)品的反饋意見(jiàn),以下關(guān)于意見(jiàn)分析方法的描述,正確的是:()A.人工閱讀所有反饋意見(jiàn),憑主觀(guān)判斷總結(jié)主要觀(guān)點(diǎn)B.利用自然語(yǔ)言處理技術(shù)對(duì)反饋進(jìn)行分類(lèi)和情感分析C.只關(guān)注反饋中的負(fù)面意見(jiàn),忽略正面意見(jiàn)D.對(duì)于模糊不清的反饋意見(jiàn),直接忽略不計(jì)13、在數(shù)據(jù)分析中,描述性統(tǒng)計(jì)是常用的方法之一。以下關(guān)于描述性統(tǒng)計(jì)指標(biāo)的說(shuō)法中,錯(cuò)誤的是?()A.均值是一組數(shù)據(jù)的平均值,能反映數(shù)據(jù)的集中趨勢(shì)B.中位數(shù)是將數(shù)據(jù)從小到大排序后位于中間位置的數(shù)值,不受極端值影響C.標(biāo)準(zhǔn)差反映了數(shù)據(jù)的離散程度,標(biāo)準(zhǔn)差越大,數(shù)據(jù)的波動(dòng)越小D.描述性統(tǒng)計(jì)指標(biāo)可以幫助我們快速了解數(shù)據(jù)的基本特征和分布情況14、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷(xiāo)活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶(hù)流量、購(gòu)買(mǎi)轉(zhuǎn)化率和客戶(hù)滿(mǎn)意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀(guān)判斷15、在數(shù)據(jù)分析中,模型的過(guò)擬合和欠擬合是常見(jiàn)的問(wèn)題。假設(shè)要訓(xùn)練一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,以下關(guān)于防止過(guò)擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過(guò)擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化16、主成分分析(PCA)是一種數(shù)據(jù)降維技術(shù)。假設(shè)要對(duì)高維數(shù)據(jù)進(jìn)行降維以便于分析和可視化,以下關(guān)于主成分分析的描述,正確的是:()A.不考慮數(shù)據(jù)的方差和相關(guān)性,直接進(jìn)行主成分提取B.提取過(guò)多的主成分,導(dǎo)致信息冗余,增加分析的復(fù)雜性C.合理確定保留的主成分?jǐn)?shù)量,使其能夠在最大程度保留原始數(shù)據(jù)信息的同時(shí)降低維度,并解釋主成分的含義D.認(rèn)為主成分分析可以適用于所有類(lèi)型的數(shù)據(jù),不進(jìn)行數(shù)據(jù)的預(yù)處理和適用性評(píng)估17、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是18、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)函數(shù)在Python中經(jīng)常被使用?()A.groupby()B.merge()C.concat()D.pivot_table()19、數(shù)據(jù)分析中,數(shù)據(jù)挖掘技術(shù)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和規(guī)律。以下關(guān)于數(shù)據(jù)挖掘的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以使用多種算法,如決策樹(shù)、聚類(lèi)、關(guān)聯(lián)規(guī)則挖掘等B.數(shù)據(jù)挖掘的結(jié)果需要進(jìn)行解釋和評(píng)估,以確定其有效性和實(shí)用性C.數(shù)據(jù)挖掘只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集沒(méi)有太大作用D.數(shù)據(jù)挖掘可以幫助企業(yè)做出更明智的決策,提高競(jìng)爭(zhēng)力20、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)改進(jìn)數(shù)據(jù)質(zhì)量的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量監(jiān)控的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量監(jiān)控可以通過(guò)設(shè)置數(shù)據(jù)質(zhì)量指標(biāo)、定期檢查和預(yù)警等方式來(lái)實(shí)現(xiàn)B.數(shù)據(jù)質(zhì)量監(jiān)控應(yīng)覆蓋數(shù)據(jù)的采集、存儲(chǔ)、處理和使用等各個(gè)環(huán)節(jié)C.數(shù)據(jù)質(zhì)量監(jiān)控需要建立有效的反饋機(jī)制,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問(wèn)題D.數(shù)據(jù)質(zhì)量監(jiān)控只需要在數(shù)據(jù)倉(cāng)庫(kù)中進(jìn)行,其他數(shù)據(jù)源不需要進(jìn)行監(jiān)控二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的預(yù)處理以適應(yīng)聚類(lèi)分析?請(qǐng)闡述包括數(shù)據(jù)標(biāo)準(zhǔn)化、特征選擇等方法,并舉例說(shuō)明。2、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征工程,包括特征提取、選擇和構(gòu)建的方法,以及它們對(duì)模型性能的影響。3、(本題5分)在處理生物醫(yī)學(xué)數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋基因表達(dá)分析、臨床數(shù)據(jù)挖掘等概念,并舉例說(shuō)明應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某超市積累了不同時(shí)間段的顧客流量、商品銷(xiāo)售數(shù)據(jù)、促銷(xiāo)活動(dòng)效果等。分析如何根據(jù)這些數(shù)據(jù)優(yōu)化店鋪布局和人員安排。2、(本題5分)某健身俱樂(lè)部收集了會(huì)員的健身項(xiàng)目選擇、鍛煉頻率、身體指標(biāo)等數(shù)據(jù)。研究怎樣根據(jù)這些數(shù)據(jù)為會(huì)員提供個(gè)性化的健身方案。3、(本題5分)一家美容美發(fā)連鎖機(jī)構(gòu)收集了各門(mén)店的服務(wù)項(xiàng)目銷(xiāo)售數(shù)據(jù)、客戶(hù)滿(mǎn)意度、員工績(jī)效等。優(yōu)化服務(wù)項(xiàng)目和員工培訓(xùn),提高門(mén)店經(jīng)營(yíng)效益。4、(本題5分)某餐飲外賣(mài)平臺(tái)收集了商家數(shù)據(jù)、用戶(hù)訂單數(shù)據(jù)、配送數(shù)據(jù)等。分析外賣(mài)市場(chǎng)的競(jìng)爭(zhēng)態(tài)勢(shì),為商家和用戶(hù)提供更好的服務(wù)。5、(本題5分)一家在線(xiàn)旅游平臺(tái)的自駕游產(chǎn)品數(shù)據(jù)包含路線(xiàn)規(guī)劃、景點(diǎn)選擇、費(fèi)用預(yù)算、用戶(hù)評(píng)價(jià)等。探討路線(xiàn)規(guī)劃和景點(diǎn)選擇對(duì)費(fèi)用預(yù)算和用戶(hù)評(píng)價(jià)的關(guān)系。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)教育領(lǐng)域逐漸重視數(shù)據(jù)分析在個(gè)性化學(xué)習(xí)和教學(xué)質(zhì)量提升方面的應(yīng)用。請(qǐng)論述如何利用學(xué)生的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論