版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TheBusinessCaseforLC3
AGlobalSolutionforLow-Carbon,Low-CostCement
Report/December2024
AuthorsandAcknowledgments
Authors
ChandlerRandol
SwathiShanthaRaju,formerlyofRMIBenSkinner
JamesSun,formerlyofRMI
Authorslistedalphabetically.AllauthorsfromRMIunlessotherwisenoted.
Contacts
ChandlerRandol,chandler.randol@BenSkinner,bskinner@
CopyrightsandCitation
ChandlerRandol,BenSkinner,JamesSun,andSwathiShanthaRaju,TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement,RMI,2024,
/insight/the-business-case-for-lc3
.
RMIvaluescollaborationandaimstoacceleratetheenergytransitionthroughsharingknowledgeand
insights.Wethereforeallowinterestedpartiestoreference,share,andciteourworkthroughtheCreativeCommonsCCBY-SA4.0license.
/licenses/by-sa/4.0/
.
AllimagesusedarefromiSunlessotherwisenoted.
Acknowledgments
Fundingpartner:TheteamexpressesourheartfeltappreciationtotheClimateWorksFoundationforitssupportandpartnershipinfundingthiswork.
RMIcontributors:WethankAnnaGoldman(formerintern),HeatherHouse,andRadhikaLalit(formerlywithRMI)fortheircontributionstothisreport.
Externalcontributors/reviewers:WeextendourgratitudetoPeterDicksonfromCBIGhana,Dr.Karen
ScrivenerfromécolePolytechniqueFédéraledeLausanne,CraigHargisandKasFarsadfromFortera,AmithKalathingalandRemiBarbarulofromHolcim,FernandoMartirenafromUniversidadCentraldelasVillas,andYosraBrikifromVicatforgraciouslyofferingtheirinsightstothiswork.
Inclusiononthislistdoesnotindicateendorsementofthereport’sfindings.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/2
AboutRMI
RMIisanindependentnonprofit,foundedin1982asRockyMountainInstitute,thattransformsglobalenergysystemsthroughmarket-drivensolutionstoalignwitha1.5°Cfutureandsecureaclean,
prosperous,zero-carbonfutureforall.Weworkintheworld’smostcriticalgeographiesandengage
businesses,policymakers,communities,andNGOstoidentifyandscaleenergysysteminterventionsthatwillcutclimatepollutionatleast50percentby2030.RMIhasofficesinBasaltandBoulder,Colorado;NewYorkCity;Oakland,California;Washington,D.C.;Abuja,Nigeria;andBeijing.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/3
TableofContents
ExecutiveSummary 5
KeyStudyResults 5
KeyStrategicInsights 6
Introduction 7
CementandConcreteProduction 8
DecarbonizationPathways 9
StrategiesforReducingClinkerinCement 10
ClayCalcination 11
TheBusinessCaseforLC3inDierentMarkets 12
NorthAmerica 14
Europe 15
LatinAmerica 16
Africa 17
StudyApproach 19
Methodology 19
LC3CementPlantCaseStudiesandModelScenarios 19
Assumptions 20
Plant-SpecificConsiderations 20
ComparativeAnalysisofLC3andBenchmarkCements 20
ResultsoftheSevenCaseStudies 23
EconomicBenefitsofLC3forCementProducers 24
ClimateImpactofLC3 28
BarriersandChallenges 29
1.MaterialsSourcing 29
2.AdherencetoStandards 29
3.PhysicalProperties 32
4.CapitalExpenses 32
KeyAnalyticalFindings 33
ImplicationsofLC3ontheCementMarket,ActionsNeeded,
andWhatComesNext 34
Conclusion 36
Endnotes 37
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/4
ExecutiveSummary
Themomentisnowforlimestonecalcinedclaycement(LC3).Asthecementindustryseekstocutcostsanddecarbonize,LC3offersascalable,cost-effectivesolutionthatisprimedandready.Thisreportanalyzes
LC3’sfinancialandenvironmentalbenefits,ultimatelyshowingthatLC3isatransformativeopportunityforcementproducersworldwide.
TheanalysiscomparesthecostsofLC3,normalizedtoUSdollarsperton(US$/t),withlocalcement
benchmarksacrossfourregions:NorthAmerica,Europe,LatinAmerica,andAfrica.ModelingresultsofLC3andconventionalcementinvestmentsshowcapitalandoperatingexpensesacrosseachstep,includingkilnretrofits,energyuse,grinding,mixing,andmore.Keyfinancialmetrics—paybackperiod,internalrateof
return(IRR),andCO2emissionsavoided—provideaclearviewofLC3’seconomicpotential.ModelscenariosbuiltusingtheLC3toolfromUniversidadCentraldelasVillas,Cuba,exploreoptionsforproductionthroughintegratedplantsandgrindingstations,offeringarealisticpathtoindustry-wideadoption.
KeyStudyResults
LC3demonstratesacompellingroutetodecarbonizationwithstrongfinancialperformanceandsignificantemissionsreductions:
?OperationalCostSavings:LC3productioncanreduceoperatingexpensesbyupto33%.Lowercalcinationtemperaturesforclay,reducedfueluse,andtheabsenceoflimestonemasslossintheprocesscontributetothesesavings,especiallyinregionswherefuelcostsarehigh.
?RapidPaybackandHighReturns:LC3’slowerproductioncostsandemissionscreatefinancial
advantages,withpaybackperiodsasshortasafewmonthsinfavorableregions.Onthehigherend,paybackperiodscanextendupto10years,dependingonregionalfactorsandcapitalrequirements.IRRsareespeciallyhighinareaswithlowclaycostsandhighclinkerimportcosts,althoughlower
returnscanoccurinmarketswithhigherretrofitandtransportationexpenses.
?ResiliencetoTransportationCosts:Evenwithclaysourceslocatedupto200kmfromtheplant,LC3remainsmoreprofitablethanordinaryportlandcement(OPC)becausecalcinedclaysarefarcheaperthanclinker.Thisgeographicflexibilitysupportswidespreadadoptioninvariedmarkets.
?CO?EmissionsAvoided:LC3avoidsemissionsupto32%comparedwithtraditionalcementblends,andover40%comparedwithOPC.Thisavoidanceisachievedthroughhighclinkerreplacement(upto50%)andcalcinedclay,whichemitssignificantlylesscarbonthanclinkerproduction.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/5
KeyStrategicInsights
LC3unlocksopportunitiesfornewtechnologiesandbusinessmodels,supportingashifttowardmoreadaptable,efficient,andsustainablecementproduction:
?ConvertingClinkerKilns:AsthemarketadaptstolowerclinkerratioswithblendslikeLC3,reducedclinkerdemandmayacceleratetheclosureofinefficientclinkerplants;however,companiescan
proactivelyplantoconvertthesekilnsforclaycalcination.
?ElectrifyingClayCalcinationKilns:Calciningclayrequireslowertemperaturesthanclinkerproduction,potentiallyenablingtheuseofelectriccalcinerspoweredbyrenewableenergy.
?NewBusinessOpportunities:Calcinedclayscanpromotenewbusinessmodelstoemergesuchasmodularkilnscolocatedonclaymines,potentiallyopeningthelow-carboncementmarkettonew,smaller-scaleproducers.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/6
Introduction
LC3isalow-carboncementblendthatcombinescalcinedclay(kaoliniteclayheatedatlower
temperatures)andlimestonetosignificantlyreducetheneedfortraditionalclinker,themostcarbon-
intensivecomponentofcement.Byreplacingupto50%ofclinkerwiththesematerials,LC3dramaticallylowerstheenergyconsumptionandCO2emissionsassociatedwithcementproduction.TheemissionsreductionpotentialofLC3issubstantial,withestimatessuggestinga30%–40%reductioningreenhouse
gas(GHG)emissionscomparedwithordinaryportlandcement(OPC)canbeachievedanddeployedtoday.1
Thisreductionisvitalbecausethecementindustryisresponsibleforapproximately8%ofglobalGHG
emissions,makingdecarbonizationeffortsinthissectorcrucialformeetingglobalclimatetargets.2Cementistheprimaryingredientinconcrete,whichistheworld’smostwidelyusedconstructionmaterialdueto
itsstrength,durability,andcost-effectiveness.Astheworldcontinuestourbanize—particularlyinrapidlydevelopingregionssuchasAsia,Africa,andLatinAmerica—thedemandforcementisexpectedtogrow
significantly.Accordingtoestimates,by2050,morethan70%oftheglobalpopulationwillliveincities,anddevelopingnationswillneedtobuildvastamountsofinfrastructuretoaccommodatethisshift.3
TheenvironmentalimpactofthisconstructionboomcouldbeenormousiftraditionalcementcontinuestodominatethemarketbecauseitsproductionishighlyenergyintensiveandemitslargeamountsofCO2emissionsduetothecalcinationoflimestone.Thismakesthedecarbonizationofcementproductiona
criticalclimateactionthatisessentialtomeetingthegrowinginfrastructureneedsofanurbanizingworldwithoutexacerbatingclimatechange.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/7
Thefindingsshowthatreplacing
OPCwithLC3
inconcrete
canreduceCO2
emissionsover40%whilemaintainingorimproving
performance.Theplantanalysis
alsorevealsup
to30%reductioninoperational
costsonaveragecomparedwithOPCforthe
modeledscenarios.
LC3offersascalable,profitablealternativetoOPCthatcanmeetincreasingcementdemandwhilereducingthesector’scontributiontoglobalemissions,thusplayingapivotalroleinbuildingamoresustainable,resilientfutureforbothdeveloping
anddevelopedregions.TheabilitytoreduceemissionswithoutmajorchangestoexistingproductioninfrastructuremakesLC3anidealsolutionforwidespreadadoption,particularlyinregionswithhighgrowthpotential.
NewRMIanalysis,showcasedinthisreport,exploresthepotentialofLC3to
decarbonizethecementindustry,drawingoncasestudiesandinterviewswith
earlyadopterstoassessthefinancialviabilityandemissionsreductionsacross
sevencementplantscenariosinNorthAmerica,Europe,LatinAmerica,and
Africa.ThefindingsshowthatreplacingOPCwithLC3inconcretecanreduce
CO2emissionsover40%whilemaintainingorimprovingperformance.The
plantanalysisalsorevealsupto30%reductioninoperationalcostsonaverage
comparedwithOPCforthemodeledscenarios,withpaybackperiodsranging
fromlessthan1yearto10yearswithoutacarbonprice,andfromlessthan1yearto4yearswithacarbonprice.
ThereportalsobeginstoexamineLC3’sbroaderpotentialimpactontheindustryanditsfuturetrajectory.Withcompellingevidenceofsignificantcostsavings,
swiftpaybackperiods,andsubstantialemissionsreductions,thisreportmakesaclearbusinesscaseforLC3asacriticalsolutionforthecementindustry.Toremaincompetitiveandleadinthetransitiontosustainableconstruction,nowisthetimeforstakeholderstoinvestinandscaleLC3.
CementandConcreteProduction
TheindustrystandardforcementisOPC,whichismadefromtwoinputs:clinkerandgypsum.Attheheartofthisprocessistheproductionofclinker,thekey
ingredientinOPC,whichisformedbyheatinglimestone(calciumcarbonate)tohightemperaturesinakiln.Thisheating,orcalcination,causesthelimestonetobreakdownintolime(calciumoxide)andreleasessignificantamountsofCO2intheprocess.Theclinkeristhencooled,ground,andmixedwithgypsumto
producecement.
AsshowninExhibit1,theclinkerproductionphaseisresponsibleforaround
85%–90%ofcement’stotalCO2equivalent(CO2e)emissions.4Dependingonplantageandefficiency,roughly35%–40%ofclinkerproductionemissionscomefromtheenergyrequiredtoheatthekilns,traditionallysourcedfromfossilfuelssuch
ascoalandpetroleumcoke(petcoke),andtheremaining60%,knownasprocessemissions,derivefromtheconversionoflimestoneintolime.5Theremaining10%–15%ofcement’stotalCO2eemissionscomefromtheenergyrequiredtoheatthekilns,traditionallysourcedfromfossilfuelslikecoalandpetcoke,forphasesafterclinkerproduction.6
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/8
Exhibit1Emissionsfromthefullconcreteandcementvaluechain
PercentageoftotalCO2emissionsoftheconcreteandcementsector
Valuechainincludedinanalysis(Scope1and2)ProcessemissionsEnergyemissions
Clinker
Construction
Concrete
Cement
Rawmaterials
Recarbonation
5%1%
5%
–10%
35%
53%
1%
Productioncycle
Ready-mix
Rawmill
Natural
recarbonation
Rawmaterialextraction
Cyclone
preheater
Application
Crusher
Rotarykiln
Logistics
Blendingbed
Clinkerstorage
Bags
andmixing
Rawmaterial
extraction
andpreparation
Cementgrinding
ConcreteConstructionNatural
Clinkerproduction
recarbonation
Cementmill
Note:ThisillustrationcoversScope1and2emissionsandincludestotalrawmaterialextraction.Otherconstructionmaterialsarenotconsideredinthisanalysis.RMIGraphic.Source:MissionPossiblePartnership,CementandConcreteSectorTransitionStrategy
DecarbonizationPathways
Totackletheseemissions,severalkeydecarbonizationpathwayshavebeenidentified:reducingthe
clinkerfactor,improvingfuelefficiency,developingalternativebinders,andimplementingcarboncapture,utilization,andstorage(CCUS).Whileeachofthesestrategiesoffersuniqueopportunitiestocutemissionsatdifferentstagesofthecement-makingprocess,thisreportfocusesonhigh-impactpathwaystoreduceclinkerincement.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/9
StrategiesforReducingClinkerinCement
Clinkerproductionisthemostcarbon-intensivestepincementmanufacturing;thus,reducingtheratioofclinkerincementcanhaveamajorimpactonoverallemissions.OneofthemosteffectivestrategiesforreducingCO2emissionsincementproductionisloweringtheclinkerfactorbyusingblendedcements.Loweringtheclinkercontentincementproductioncanalsobeimplementedinthenearterm,whereasdecarbonizationstrategiessuchasCCUSoralternativebinderswillbecomeavailableinthemedium-to-longterm.
Blendedcementsareproducedbypartiallysubstitutingclinkerwithsupplementarycementitiousmaterials(SCMs),whichcontributetothecement’sfinalpropertieswhilesignificantlyreducingtheemissions
associatedwithclinkerproduction.SCMscanreplaceasubstantialportionofclinker,offeringacriticalpathwayforemissionsreductionsbyleveragingmaterialswithlowercarbonfootprints.Moreover,mostSCMscanoffersignificantcostsavingscomparedwithclinker,makingtheiruseanattractiveoptionforreducingbothemissionsandproductioncosts.7
TraditionalSCMs
SeveraltraditionalSCMshavebeenusedfordecadestocreateblendedcements:
?FlyAsh:Aby-productofcoalcombustioninpowerplants,flyashhasbeenwidelyusedasanSCMduetoitspozzolanicproperties,whichhelpimprovethestrengthanddurabilityofconcrete.Flyashcanreplaceupto30%–35%ofclinkerincement.8However,itsavailabilityisdecliningduetotheglobal
phaseoutofcoalpowerplantsandconcernsexistaboutitssustainabilityasafossil-derivedmaterial.
?GroundGranulatedBlastFurnaceSlag(GGBFS):AnothercommonSCMisGGBFS,aby-productof
thesteelmakingprocess.Ithasthepotentialtoreplace45%–95%ofclinker,makingitoneofthemosteffectiveclinkersubstitutesintermsofemissionsreduction.9However,thesupplyofGGBFSislinkedtotraditionalsteelmanufacturing,leadingtoconcernsabouttheavailabilityandstabilityofGGBFSasalong-termsolutionasthesteelsectordecarbonizes.Additionally,itcanbemoreexpensivethanotherSCMsduetoitsprocessingrequirementsandlimitedavailability.
?Limestone:Limestone,whenfinelyground,canbeusedasanSCMinsmallquantities(5%–15%)toreducetheclinkercontent.10Althoughitdoesnothavethesamepozzolanicpropertiesasflyashorslag,itsabundanceandrelativelylowprocessingcostsmakeitanattractiveoption.However,thesubstitutionrangeforlimestoneisrelativelylow.
EmergingSCMs
AsthesupplyoftraditionalSCMsfacesconstraints,theindustryisincreasinglylookingtoemergingSCMssuchascalcinedclaysandnaturalpozzolans.
?CalcinedClays:Calcinedclays,especiallywhencombinedwithlimestone,offerahighlyscalable
andimpactfulsolution.LC3canreplace30%–40%ofclinker,makingitasignificantcontributortoemissionsreductions.11LC3isparticularlyattractivebecausebothlimestoneandclayareabundantrawmaterials,whichmeansthistechnologyhasthepotentialtobewidelyadoptedacrossdiversegeographies.12Calciningclaysrequireslowertemperaturesthanclinker,reducingtheoverallenergydemandandassociatedproductionemissions.13
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/10
?NaturalPozzolans:Naturalpozzolans,suchasvolcanicashandothersiliceousmaterials,canreplace30%–40%ofclinker.14Likecalcinedclays,theyhavebeenusedhistoricallyinconcreteproductionandareincreasinglybeingexploredasasustainableSCM.However,theavailabilityofqualitypozzolansislimitedinmanygeographies.
OtherSCMs
ManyinnovatorsareexploringsyntheticandengineeredSCMstofurtherreducetheclinkerfactor,andevenusingSCMsasamechanismtostorecarbon.15Althoughtheyholdsignificantpotentialtofurtherreduce
clinkerusageandemissions,theseSCMsfacechallengesrelatedtotechnologyreadiness,cost,market
adoptionandscalability,andlimitedreal-worldapplication.Theirfutureroleindecarbonizingcementwilldependonovercomingthesebarriersandprovingtheireffectivenessinlarge-scaleuse.
ClayCalcination
Twoprimaryequipmentoptionsexistforthecalcinationofclay:theflashcalcinerandtherotarykiln(seeExhibit2).Thesesystems,alreadyavailableintoday’smarket,catertodifferentproductioncontexts.Theflashcalcineroptionrequiressmallergranulatedclay,whereastherotarykilnapproach,atechnology
alreadyusedatcementplantsfortheclinkerizationprocess,canaccommodatealargergrainsizeand
offersthepotentialtorepurposeexistingclinkerkilns.Ultimately,thenecessaryadjustmentsandadditionsforincorporatingcalcinedclaydependonaplant’suniqueinfrastructureandequipment.
Exhibit2DepictionofLC3productionprocess
ProcessemissionsEnergyemissions
Grindingunit
Claycalcination
Grindingmill
Homogenizedclayfeedstock
Calcinedclay
CO?
Flashcalciner/
rotarykiln
700°C–800°C
LimestoneGypsum
Clinkerproduction
CO?
Cyclonepreheater
RawmaterialCrusher
extraction
BlendingRaw
bedmill
CO?CO?
RotarykilnClinker
RMIGraphic.Source:RMIanalysis
1,450°Cstorage
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement
LC3
concrete
/11
TheBusinessCaseforLC3
inDifferentMarkets
Asthecementindustryexploresvariousdecarbonizationpathways,LC3standsoutasakeysolutionthatalignswiththeindustry’simmediateandlong-termgoals.Amongthestrategiesaimedatreducingclinkercontent,LC3offerssignificantadvantagesintermsofscalabilityandeaseofintegration.UnlikeotherSCMs,whichfacesupplyconstraints,LC3reliesonabundantrawmaterials—limestoneandclay.ThisscalabilityandaccessibilitygiveLC3aclearbusinessadvantageforbroadimplementation,particularlyinregions
wherelimitedlimestonedepositsdriveupclinkerimportcosts,suchasAfrica.16ByadoptingLC3,these
regionscouldsignificantlyreducecostswhilealsoachievingsubstantialenvironmentalbenefits,makingitafinanciallyandenvironmentallysoundinvestment.
LC3israpidlybecomingmarketreadyglobally,withColombiashowcasingthemostextensiveuseduetoitsadoptionbyColombiancementproducerArgosCementos.LC3hasbeenappliedinhigh-risebuildings,highways,andtunnels,demonstratingitsviabilityinlarge-scaleinfrastructure.Full-scaleproductionis
underwayinahandfulofcementplants(seeExhibit3),withadditionalprojectsrecentlyannouncedintheUnitedStates,supportedbyDepartmentofEnergy(DOE)funding.
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/12
Exhibit3FeaturesoffourcementcompaniescurrentlyproducingorplanningtoproduceLC3andcalcinedclayblends
Plant
Location
Startof
Operation/Production
LC3orOtherCCB*
KeyFeatures
CBI
Ghana
Tema,Ghana
2025
LC3
?ExpansionofanexistingOPCplant
?Cementblendswith60%–70%clinkercontent
?30%–40%CO2emissionsreductionperton
Holcim
Macuspana–
Tabasco,Mexico
2023
LC3
?Cementblendwith50%clinkercontent
?50%CO2emissionsreductionincombinationwithalternativefuelsandwasteheatrecovery
Saint-Pierre-la-Cour,France
2023
CCB
?50%CO2emissionsreductionincombinationwithalternativefuelsandwasteheatrecovery
LaMalle,France
2021
CCB
?FirstcalcinedclaycementlineinFrance
?30%CO2emissionsreductionincombinationwithalternativefuelsandwasteheatrecovery
Fortera
Redding,CA,US
2023
CCB
?Reactivecalciumcarbonate(vaterite)canbeusedtoformCCB:45%clinker,5%gypsum,25%vaterite,25%calcinedclay
?36%CO2emissionsreduction
?ImprovedworkabilityversuscomparableCCBusingintergroundlimestone
Vicat
Sobradinho,Brazil
2009
CCB
?Rotarykilnusedforcalcination
?Durabilityfeaturessuchasresistancetochlorideingressandalkalisilicareaction
?Improvedearly-agestrength
?16%CO2emissionsintensityreduction
Xeuilley,France
2024
LC3
?Flashcalcinationtechnology
?SupportedbygrantsfromADEME,theFrenchnationalagencyfortheenvironment,andtheEUbecauseofitsenvironmentalbenefits
*Note:CCBiscalcinedclayblend.RMIGraphic.Source:RMIinterviews
TheBusinessCaseforLC3:AGlobalSolutionforLow-Carbon,Low-CostCement/13
Anoverviewoftheregulatoryenvironmentsforeachregionisprovidedbelow,settingthestageforamoredetailedcasestudyanalysisofNorthAmerica,Europe,LatinAmerica,andAfrica,whichfollowslaterinthereport.
NorthAmerica
PrescriptivestandardsaredominantinNorthAmerica,butrecentDOEfundingisboostingmomentumforLC3intheUnitedStates.
NorthAmericaoperatesunderhighlyprescriptivestandardsthatposechallengestotheadoptionof
innovativematerialslikeLC3.TheAmericanConcreteInstitute(ACI),whichsetskeyconcretedesignand
constructionstandards,theInternationalCodeCouncil’s(ICC)InternationalBuildingCode,whichgovernsconstructionsafetyregulations,andASTMInternational,whichdevelopsandpublisheswidelyrecognizedconsensus-basedstandardsformaterials,products,systems,andservices,playcrucialrolesinshapingthecementandconcretemarkets.Whilethesestandardsensurequalityandsafety,theyalsocreatebarrierstocommercializationofmoresustainabletechnologieslikeLC3.
OnemajorspecificationgoverningblendedcementisASTMC595,whichdefinesrequirementsforvarioustypesofblendedhydrauliccementandlimitsclinkerreplacement.Incontrast,ASTMC1157representsashifttowardperformance-basedstandards,offeringmoreflexibilityformaterialsandchemicaladditionstoclinker.Forinstance,ASTMC1157allowscementproducerstotargetspecificneeds,suchashighearlystrengthorhighsulfateresistance,withoutmandatingmaterialsormixproportions.ASTMC1157,aroundsince1992,isstartingtoseemoreadoptionintheUSconstructionindustrywithsophisticatedpurchaserssuchastechnologycompaniesbuildingoutdatacenters.However,adoptioncouldbemorewidespreadasmanyengineers,contractors,andregulatorscontinuetorelyontraditionalprescriptivestandards.
Despitetheselimitations,LC3isgainingtractionintheUnitedStates.InMarch2024,theDOE’sIndustrialDemonstrationsProgramsignaledstrongsupportforLC3whenawarding$1.5billiontosixcement
decarbonizationprojects,threeofwhichfocusonproducingcalcinedclays,akeycomponentofLC3.17
Drivenbyfederalandstate“buyclean”policiesandgrowingcorporatecommitments,end-usersare
increasinglyseekinglower-carbonoptionsthatcanbespecifiedandimplementedtoday,positioningLC3asatimelysolution.18
Forteraproducesareactiveformofcalciumcarbonatecalledvaterite,whichcanbeblended
withcalcinedclayinlieuoflimestone,achievingamixturethatreplaces50%–70%ofclinker.
Thecompany’sReAct?(45%clinker,5%gypsum,25%vaterite,and25%calcinedclay)reduces
emissionsby36%comparedwithOPC.ForterausesitsReCarb?processtoproducevaterite
byrecombiningCO2emissionsfromthekilnwithcalciumoxide,resultinginahighlyreactive,
sphericalmineralthatcanreducewaterdemand,increaseearlystrength,andimproveworkabilitycomparedwithcalcinedclayblendsmadeusinggroundlimestone.Thecompanyrecently
launchedasmallcommercial-scaleplanttoproducevateritewithinanexistingcementplantinRedding,California.Aswithmanynewcementtechnologies,someofthepotentialbenefitsofthismaterial,andtheeconomicsandpracticalitiesofproducingitatscale,arenotfullyproveninreal-world
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高速公路ETC系統(tǒng)升級改造合同
- 2025年度智能物流平臺合作返點合同范本4篇
- 2025年度現(xiàn)代農(nóng)業(yè)設(shè)施承攬合同補充協(xié)議4篇
- 2025年度油氣儲罐安全檢測與改造合同4篇
- 2025年10kv線路施工綠色環(huán)保與節(jié)能減排合同3篇
- 2025年度智能車位租賃合同轉(zhuǎn)讓協(xié)議書(全新版)4篇
- 2024年車輛購銷合同示范文本
- 2025年度智能儲煤場租賃管理服務(wù)合同4篇
- 2024礦用設(shè)備租賃合同
- 2025年度城市更新改造項目承包合同簽約與歷史文化保護協(xié)議(2024版)3篇
- 2024年??谑羞x調(diào)生考試(行政職業(yè)能力測驗)綜合能力測試題及答案1套
- 六年級數(shù)學質(zhì)量分析及改進措施
- 一年級下冊數(shù)學口算題卡打印
- 2024年中科院心理咨詢師新教材各單元考試題庫大全-下(多選題部分)
- 真人cs基于信號發(fā)射的激光武器設(shè)計
- 【閱讀提升】部編版語文五年級下冊第三單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 四年級上冊遞等式計算練習200題及答案
- 法院后勤部門述職報告
- 2024年國信證券招聘筆試參考題庫附帶答案詳解
- 道醫(yī)館可行性報告
- 視網(wǎng)膜中央靜脈阻塞護理查房課件
評論
0/150
提交評論