廣東科學(xué)技術(shù)職業(yè)學(xué)院《智能數(shù)據(jù)挖掘與處理技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣東科學(xué)技術(shù)職業(yè)學(xué)院《智能數(shù)據(jù)挖掘與處理技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣東科學(xué)技術(shù)職業(yè)學(xué)院《智能數(shù)據(jù)挖掘與處理技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廣東科學(xué)技術(shù)職業(yè)學(xué)院《智能數(shù)據(jù)挖掘與處理技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
廣東科學(xué)技術(shù)職業(yè)學(xué)院《智能數(shù)據(jù)挖掘與處理技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁廣東科學(xué)技術(shù)職業(yè)學(xué)院

《智能數(shù)據(jù)挖掘與處理技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的計(jì)算機(jī)視覺技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺的描述,不準(zhǔn)確的是()A.目標(biāo)檢測、圖像分類和語義分割是計(jì)算機(jī)視覺中的常見任務(wù)B.計(jì)算機(jī)視覺技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測等領(lǐng)域C.計(jì)算機(jī)視覺系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺技術(shù)的發(fā)展2、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)評估和欺詐檢測中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個(gè)系統(tǒng)來檢測信用卡交易中的欺詐行為,需要實(shí)時(shí)分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實(shí)時(shí)、動(dòng)態(tài)的數(shù)據(jù)時(shí)最為有效?()A.實(shí)時(shí)數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗(yàn)的規(guī)則判斷D.隨機(jī)抽樣檢查3、人工智能中的遷移學(xué)習(xí)可以將在一個(gè)任務(wù)上學(xué)習(xí)到的知識(shí)應(yīng)用到其他相關(guān)任務(wù)中。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型,要將其應(yīng)用于醫(yī)學(xué)圖像分析,以下哪個(gè)因素可能會(huì)限制遷移學(xué)習(xí)的效果?()A.數(shù)據(jù)分布的差異B.模型的復(fù)雜度C.計(jì)算資源的限制D.任務(wù)的相似性4、在人工智能的數(shù)據(jù)分析中,假設(shè)要從大量的數(shù)據(jù)中發(fā)現(xiàn)潛在的模式和關(guān)系,以下關(guān)于數(shù)據(jù)分析方法的描述,正確的是:()A.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡單的關(guān)聯(lián)關(guān)系,無法處理復(fù)雜的數(shù)據(jù)結(jié)構(gòu)B.聚類分析可以將數(shù)據(jù)自動(dòng)分為不同的類別,但類別數(shù)量需要事先指定C.主成分分析能夠降低數(shù)據(jù)的維度,同時(shí)保留主要的信息D.以上數(shù)據(jù)分析方法在實(shí)際應(yīng)用中通常單獨(dú)使用,不需要結(jié)合其他方法5、假設(shè)要開發(fā)一個(gè)能夠理解人類情感和意圖的人工智能助手,例如根據(jù)用戶的情緒提供相應(yīng)的服務(wù),以下哪種技術(shù)和數(shù)據(jù)可能是關(guān)鍵的?()A.情感計(jì)算技術(shù)和情感標(biāo)注數(shù)據(jù)B.意圖識(shí)別技術(shù)和用戶行為數(shù)據(jù)C.自然語言理解技術(shù)和多模態(tài)數(shù)據(jù)D.以上都是6、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的計(jì)算資源,如GPU集群,可以加速模型的訓(xùn)練過程B.云計(jì)算平臺(tái)可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無關(guān)D.合理分配和利用算力資源對于提高訓(xùn)練效率和降低成本至關(guān)重要7、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實(shí)體之間的關(guān)系。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史人物和事件的知識(shí)圖譜,以下哪種數(shù)據(jù)源對于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價(jià)值的?()A.百科全書和歷史書籍B.社交媒體上的相關(guān)討論C.個(gè)人博客和論壇帖子D.未經(jīng)證實(shí)的網(wǎng)絡(luò)傳聞8、深度學(xué)習(xí)模型在圖像識(shí)別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)來識(shí)別不同種類的動(dòng)物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識(shí)別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果9、人工智能中的智能客服可以回答用戶的各種問題。假設(shè)我們要評估一個(gè)智能客服的性能,以下關(guān)于評估指標(biāo)的說法,哪一項(xiàng)是不正確的?()A.回答的準(zhǔn)確性B.響應(yīng)的速度C.語言的優(yōu)美程度D.能夠解決問題的復(fù)雜程度10、在一個(gè)利用人工智能進(jìn)行智能物流配送的系統(tǒng)中,為了實(shí)現(xiàn)高效的路徑規(guī)劃和車輛調(diào)度,以下哪種算法和技術(shù)可能會(huì)被運(yùn)用?()A.遺傳算法B.蟻群算法C.模擬退火算法D.以上都是11、在人工智能的強(qiáng)化學(xué)習(xí)應(yīng)用中,比如訓(xùn)練一個(gè)智能體在游戲中獲得高分,以下哪個(gè)因素對于學(xué)習(xí)效果和收斂速度可能具有重要影響?()A.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)B.策略網(wǎng)絡(luò)的架構(gòu)C.環(huán)境的復(fù)雜度D.以上都是12、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶各種問題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識(shí)庫,涵蓋各種常見問題和答案B.運(yùn)用自然語言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶的反饋,對系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語言模型進(jìn)行融合,提高回答的多樣性13、在自然語言處理中,詞向量是一種重要的表示方法。假設(shè)要對一段文本進(jìn)行語義分析,使用詞向量模型。以下關(guān)于詞向量的描述,正確的是:()A.詞向量的維度越高,對詞語的表示就越精確,不會(huì)出現(xiàn)語義混淆B.不同的詞向量模型,如Word2Vec和GloVe,生成的詞向量不能相互轉(zhuǎn)換和比較C.詞向量可以捕捉詞語之間的語義關(guān)系,例如相似性和相關(guān)性D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化14、人工智能在物流領(lǐng)域的應(yīng)用能夠提高物流效率和服務(wù)質(zhì)量。以下關(guān)于人工智能在物流應(yīng)用的敘述,不正確的是()A.可以通過路徑規(guī)劃算法優(yōu)化貨物運(yùn)輸路線,降低運(yùn)輸成本B.利用圖像識(shí)別技術(shù)實(shí)現(xiàn)貨物的自動(dòng)分揀和識(shí)別C.人工智能在物流領(lǐng)域的應(yīng)用面臨數(shù)據(jù)安全和隱私保護(hù)等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿足需求15、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無需法官審查D.幫助法官提高決策的效率和準(zhǔn)確性,但最終決策權(quán)仍在法官手中16、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)生成新聞報(bào)道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報(bào)道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報(bào)道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本17、人工智能在教育領(lǐng)域有著潛在的應(yīng)用價(jià)值。假設(shè)要開發(fā)一個(gè)個(gè)性化的學(xué)習(xí)系統(tǒng)。以下關(guān)于人工智能在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能教育系統(tǒng)可以完全取代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.有助于發(fā)現(xiàn)學(xué)生的學(xué)習(xí)問題和知識(shí)漏洞,提高教學(xué)效果18、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)具有強(qiáng)大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項(xiàng)是不正確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實(shí)數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實(shí)性上可以與真實(shí)拍攝的圖像完全無法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果19、人工智能中的弱人工智能和強(qiáng)人工智能是兩個(gè)不同的概念。假設(shè)我們在討論人工智能的發(fā)展階段,以下關(guān)于弱人工智能和強(qiáng)人工智能的描述,哪一項(xiàng)是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強(qiáng)人工智能目前已經(jīng)廣泛應(yīng)用于各個(gè)領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強(qiáng)人工智能的關(guān)鍵在于計(jì)算能力20、在人工智能的自然語言生成任務(wù)中,假設(shè)要生成一篇結(jié)構(gòu)清晰、邏輯連貫的文章。以下哪種方法能夠有助于提高生成文章的質(zhì)量?()A.引入先驗(yàn)知識(shí)和約束,指導(dǎo)生成過程B.完全依靠模型的隨機(jī)輸出,不進(jìn)行任何引導(dǎo)C.減少生成的文本長度,降低復(fù)雜性D.不考慮語法和邏輯,只關(guān)注內(nèi)容的豐富性21、當(dāng)利用人工智能進(jìn)行欺詐檢測,例如在金融交易中識(shí)別異常行為,以下哪種特征和模型可能是關(guān)鍵的因素?()A.用戶行為特征B.交易模式特征C.復(fù)雜的深度學(xué)習(xí)模型D.以上都是22、當(dāng)利用人工智能進(jìn)行語音合成,使合成的語音聽起來更加自然和富有情感,以下哪種方法可能是重點(diǎn)研究和改進(jìn)的方向?()A.改進(jìn)聲學(xué)模型B.優(yōu)化韻律模型C.提升文本分析精度D.以上都是23、圖像識(shí)別是人工智能的一個(gè)重要應(yīng)用領(lǐng)域。假設(shè)一個(gè)安防系統(tǒng)需要通過攝像頭實(shí)時(shí)識(shí)別出特定的人物或物體。以下關(guān)于圖像識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.深度學(xué)習(xí)算法在圖像識(shí)別中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.圖像識(shí)別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會(huì)對識(shí)別結(jié)果產(chǎn)生較大影響D.一旦圖像識(shí)別模型訓(xùn)練完成,就無需再進(jìn)行更新和改進(jìn),可以一直準(zhǔn)確識(shí)別各種新的圖像24、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對一組客戶數(shù)據(jù)進(jìn)行聚類分析。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場細(xì)分等應(yīng)用C.不同的聚類算法在不同的數(shù)據(jù)分布和場景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響25、人工智能中的情感識(shí)別不僅可以應(yīng)用于人類的情感分析,還可以用于動(dòng)物的行為研究。假設(shè)我們要通過動(dòng)物的行為來判斷其情感狀態(tài),以下關(guān)于動(dòng)物情感識(shí)別的說法,哪一項(xiàng)是正確的?()A.動(dòng)物的情感表達(dá)和人類完全相同B.可以直接使用人類情感識(shí)別的模型和方法C.需要結(jié)合動(dòng)物的生理特征和行為模式進(jìn)行分析D.動(dòng)物的情感識(shí)別沒有實(shí)際應(yīng)用價(jià)值26、在人工智能的對話系統(tǒng)中,需要實(shí)現(xiàn)自然流暢的交互。假設(shè)要開發(fā)一個(gè)客服機(jī)器人,以下關(guān)于對話系統(tǒng)的描述,正確的是:()A.只要對話系統(tǒng)能夠回答用戶的問題,就不需要考慮回答的方式和語氣B.對話系統(tǒng)可以完全理解用戶的意圖和情感,無需進(jìn)一步的優(yōu)化C.利用大規(guī)模的對話數(shù)據(jù)進(jìn)行訓(xùn)練,并結(jié)合語義理解和生成技術(shù),可以提高客服機(jī)器人的對話能力D.對話系統(tǒng)的性能不受語言多樣性和文化差異的影響27、在人工智能的模型訓(xùn)練中,過擬合和欠擬合是常見的問題。假設(shè)正在訓(xùn)練一個(gè)用于預(yù)測房價(jià)的人工智能模型,以下關(guān)于過擬合和欠擬合的描述,正確的是:()A.過擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)差,在新數(shù)據(jù)上表現(xiàn)好;欠擬合則相反B.模型越復(fù)雜,越不容易出現(xiàn)過擬合問題,因此應(yīng)該盡量增加模型的復(fù)雜度C.正則化技術(shù)可以有效地防止過擬合,而增加訓(xùn)練數(shù)據(jù)量可以解決欠擬合問題D.過擬合和欠擬合只與模型的架構(gòu)有關(guān),與數(shù)據(jù)和訓(xùn)練過程無關(guān)28、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實(shí)現(xiàn)家電的智能控制和自動(dòng)化運(yùn)行,根據(jù)用戶的習(xí)慣和需求進(jìn)行個(gè)性化設(shè)置B.通過語音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級階段,功能較為單一,無法滿足用戶的多樣化需求29、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個(gè)醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過分析大量的醫(yī)療影像和患者數(shù)據(jù)來給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見疾病的診斷,對于罕見病無能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響30、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟(jì)、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對少數(shù)類進(jìn)行過采樣,增加其數(shù)量B.對多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個(gè)深度強(qiáng)化學(xué)習(xí)模型,讓智能體在一個(gè)模擬的機(jī)器人操作環(huán)境中學(xué)習(xí)完成復(fù)雜的裝配任務(wù)。設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)和動(dòng)作空間,評估智能體的學(xué)習(xí)效率和任務(wù)完成質(zhì)量。2、(本題5分)利用Python的OpenCV庫,實(shí)現(xiàn)對圖像的霍夫變換。檢測圖像中的直線、圓等幾何形狀,展示變換結(jié)果。3、(本題5分)使用OpenCV和深度學(xué)習(xí)模型(如YOLO),實(shí)現(xiàn)對視頻中的物體進(jìn)行實(shí)時(shí)檢測和跟蹤。處理視頻流數(shù)據(jù),標(biāo)記出物體的位置和類別,并實(shí)時(shí)顯示跟蹤結(jié)果。4、(本題5分)利用Python的PyTorch框架,搭建一個(gè)基于注意力機(jī)制的視頻摘要生成模型。能夠從長視頻中提取關(guān)鍵幀和關(guān)鍵內(nèi)容,生成簡潔的視頻摘要。5、(本題5分)通過強(qiáng)化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論