廣東財貿(mào)職業(yè)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣東財貿(mào)職業(yè)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣東財貿(mào)職業(yè)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廣東財貿(mào)職業(yè)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
廣東財貿(mào)職業(yè)學(xué)院《機器視覺基礎(chǔ)與實踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁廣東財貿(mào)職業(yè)學(xué)院《機器視覺基礎(chǔ)與實踐》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺是一門研究如何讓計算機從圖像或視頻中獲取信息和理解內(nèi)容的學(xué)科。在計算機視覺的應(yīng)用中,目標(biāo)檢測是一項重要任務(wù)。以下關(guān)于目標(biāo)檢測的描述,不準(zhǔn)確的是()A.目標(biāo)檢測能夠準(zhǔn)確識別圖像或視頻中特定類別的物體,并確定其位置和大小B.深度學(xué)習(xí)技術(shù)的發(fā)展極大地提高了目標(biāo)檢測的準(zhǔn)確性和效率C.目標(biāo)檢測只適用于靜態(tài)圖像,對于動態(tài)視頻的處理效果不佳D.目標(biāo)檢測在自動駕駛、安防監(jiān)控和工業(yè)檢測等領(lǐng)域有著廣泛的應(yīng)用2、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機B.工業(yè)線陣相機C.手機攝像頭D.監(jiān)控攝像頭3、計算機視覺中的人臉識別技術(shù)應(yīng)用廣泛。假設(shè)要在一個門禁系統(tǒng)中實現(xiàn)準(zhǔn)確的人臉識別,以下關(guān)于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態(tài)和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫,并且識別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率4、在計算機視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復(fù)雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強,但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求5、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個或多個運動目標(biāo)。假設(shè)要跟蹤一個在操場上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運動速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤6、計算機視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是7、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機,獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個電路板都清晰成像C.采用高速攝像機,快速采集大量圖像D.選擇價格低廉的圖像采集設(shè)備,降低成本8、計算機視覺中的圖像增強旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學(xué)圖像需要進行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波9、計算機視覺中的深度估計是確定場景中物體距離相機的遠近。假設(shè)要為機器人導(dǎo)航提供深度信息,以下關(guān)于深度估計方法的精度要求,哪一項是最為關(guān)鍵的?()A.能夠區(qū)分不同物體的大致距離范圍即可B.提供精確到毫米級別的深度信息,確保機器人安全導(dǎo)航C.深度估計的精度對機器人導(dǎo)航影響不大,可以忽略D.精度要求取決于機器人的運動速度,速度越快要求精度越低10、在計算機視覺的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機參數(shù)校準(zhǔn)的重要性,哪一項是不正確的?()A.準(zhǔn)確的相機參數(shù)有助于提高三維重建的精度B.相機參數(shù)校準(zhǔn)可以減少重建過程中的誤差累積C.即使相機參數(shù)不準(zhǔn)確,也能通過后續(xù)處理得到精確的三維模型D.不同相機的參數(shù)差異會影響三維重建的結(jié)果11、在計算機視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學(xué)習(xí)方法可以學(xué)習(xí)到更具語義的圖像表示,提高圖像檢索的準(zhǔn)確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)12、計算機視覺中的圖像增強技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學(xué)習(xí)的圖像增強方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容13、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)14、在計算機視覺的圖像超分辨率任務(wù)中,假設(shè)要將一張低分辨率圖像恢復(fù)為高分辨率圖像。以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡單快速,但恢復(fù)出的圖像細節(jié)不夠清晰B.基于深度學(xué)習(xí)的方法能夠生成逼真的高分辨率圖像,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源C.圖像超分辨率技術(shù)可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復(fù)出原始高分辨率圖像的所有信息15、在計算機視覺領(lǐng)域中,當(dāng)需要對監(jiān)控視頻中的行人進行實時檢測和跟蹤,以實現(xiàn)智能安防系統(tǒng)的功能時,以下哪種方法在處理復(fù)雜場景和多目標(biāo)跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺在智能安防中的應(yīng)用場景。2、(本題5分)解釋計算機視覺在保險理賠中的應(yīng)用。3、(本題5分)說明計算機視覺在海洋生態(tài)監(jiān)測中的作用。4、(本題5分)說明計算機視覺在環(huán)境監(jiān)測中的作用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)基于深度學(xué)習(xí),實現(xiàn)對跳水比賽中運動員入水姿勢的檢測。2、(本題5分)在農(nóng)業(yè)灌溉中,使用計算機視覺監(jiān)測土壤濕度和作物生長情況。3、(本題5分)利用目標(biāo)檢測算法,在森林火災(zāi)監(jiān)控圖像中檢測火源。4、(本題5分)使用目標(biāo)檢測技術(shù),從海洋監(jiān)測圖像中檢測出海洋垃圾的分布區(qū)域。5、(本題5分)運用圖像識別算法,對不同類型的廚房電器圖像進行分類和識別。四、分析題(本大題共4個小題,共40分)1、(本題10分)某時尚雜志的封面設(shè)計經(jīng)常引領(lǐng)潮流,其通過獨特的攝影風(fēng)格、個性化的字體和精心編排的色彩組合吸引讀者。請研究該雜志封面在體現(xiàn)時尚趨勢、吸引目標(biāo)讀者群體、提升雜志銷量方面的策略和成就。2、(本題10分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論