【2021高考復(fù)習(xí)參考】高三數(shù)學(xué)(理)配套黃金練習(xí):9.4_第1頁(yè)
【2021高考復(fù)習(xí)參考】高三數(shù)學(xué)(理)配套黃金練習(xí):9.4_第2頁(yè)
【2021高考復(fù)習(xí)參考】高三數(shù)學(xué)(理)配套黃金練習(xí):9.4_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第九章9.4第4課時(shí)高考數(shù)學(xué)(理)黃金配套練習(xí)一、選擇題1.已知直線l過(guò)點(diǎn)(-2,0),當(dāng)直線l與圓x2+y2=2x有兩個(gè)交點(diǎn)時(shí),其斜率k的取值范圍是()A.(-2eq\r(2),2eq\r(2))B.(-eq\r(2),eq\r(2))C.(-eq\f(\r(2),4),eq\f(\r(2),4))D.(-eq\f(1,8),eq\f(1,8))答案C解析設(shè)l的方程y=k(x+2),即kx-y+2k=0.圓心為(1,0).由已知有eq\f(|k+2k|,\r(k2+1))<1,∴-eq\f(\r(2),4)<k<eq\f(\r(2),4).2.直線xsinθ+ycosθ=2+sinθ與圓(x-1)2+y2=4的位置關(guān)系是()A.相離B.相切C.相交D.以上都有可能答案B解析圓心到直線的距離d=eq\f(|sinθ-2-sinθ|,\r(sin2θ+cos2θ))=2.所以直線與圓相切.3.平移直線x-y+1=0使其與圓(x-2)2+(y-1)2=1相切,則平移的最短距離為()A.eq\r(2)-1B.2-eq\r(2)C.eq\r(2)D.eq\r(2)-1與eq\r(2)+1答案A解析如圖,圓心(2,1)到直線l0:x-y+1=0的距離d=eq\f(|2-1+1|,\r(2))=eq\r(2),圓的半徑為1,故直線l0與l1的距離為eq\r(2)-1,∴平移的最短距離為eq\r(2)-1,故選A.4.已知圓O1:(x-a)2+(y-b)2=4;O2:(x-a-1)2+(y-b-2)2=1(a,b∈R),那么兩圓的位置關(guān)系是()A.內(nèi)含B.內(nèi)切C.相交D.外切答案C解析由兩圓方程易知其圓心坐標(biāo)分別為O1(a,b)、O2(a+1,b+2),經(jīng)計(jì)算得:O1O2=eq\r(5),由于R-r=1<O1O2=eq\r(5)<R+r=3,故兩圓相交.5.函數(shù)y=f(x)的圖象是圓心在原點(diǎn)的單位圓在Ⅰ、Ⅲ象限內(nèi)的兩段圓孤,如圖,則不等式f(x)<f(-x)+2x的解集為()A.(-1,-eq\f(\r(2),2))∪(0,eq\f(\r(2),2))B.(-1,-eq\f(\r(2),2))∪(eq\f(\r(2),2),1)C.(-eq\f(\r(2),2),0)∪(0,eq\f(\r(2),2))D.(-eq\f(\r(2),2),0)∪(eq\f(\r(2),2),1)答案D6.由直線y=x+1上的一點(diǎn)向圓(x-3)2+y2=1引切線,則切線長(zhǎng)的最小值為()A.1B.2eq\r(2)C.eq\r(7)D.3答案C解析設(shè)直線上一點(diǎn)P,切點(diǎn)為Q,圓心為M,則|PQ|即為切線長(zhǎng),MQ為圓M的半徑,長(zhǎng)度為1,|PQ|=eq\r(|PM|2-|MQ|2)=eq\r(|PM|2-1),要使|PQ|最小,即求|PM|最小,此題轉(zhuǎn)化為求直線y=x+1上的點(diǎn)到圓心M的最小距離,設(shè)圓心到直線y=x+1的距離為d,則d=eq\f(|3-0+1|,\r(12+(-1)2))=2eq\r(2),∴|PM|最小值為2eq\r(2),|PQ|=eq\r(|PM|2-1)=eq\r((2\r(2)))2-1)=eq\r(7),選C.7.若圓O1方程為:(x+1)2+(y+1)2-4=0,圓O2方程為:(x-3)2+(y-2)2-1=0,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()A.線段O1O2的中垂線B.過(guò)兩圓的公切線交點(diǎn)且垂直于線段O1O2的直線C.兩圓公共弦所在的直線D.一條直線且該直線上的點(diǎn)到兩圓的切線長(zhǎng)相等答案D解析∵圓心距|O1O2|=eq\r((3+1)2+(2+1)2)=5>2+1=3,∴兩圓相離.把所給的軌跡方程化簡(jiǎn)得4x+3y-7=0明顯線段O1O2的中點(diǎn)不在直線4x+3y-7=0上,排解A、C,由計(jì)算知,到兩圓的切線長(zhǎng)相等的點(diǎn)的軌跡恰為直線4x+3y-7=0.8.已知圓C:x2+y2=1,點(diǎn)A(-2,0)及點(diǎn)B(2,a),從A點(diǎn)觀看B點(diǎn),要使視線不被圓C攔住,則a的取值范圍是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-eq\f(4,3)eq\r(3))∪(eq\f(4,3)eq\r(3),+∞)D.(-∞,-4)∪(4,+∞)答案C解析解法一:(直接法)寫出直線方程,將直線與圓相切轉(zhuǎn)化為點(diǎn)到直線的距離來(lái)解決.過(guò)A、B兩點(diǎn)的直線方程為y=eq\f(a,4)x+eq\f(a,2),即ax-4y+2a=0,則d=eq\f(|2a|,\r(a2+16))=1,化簡(jiǎn)后,得3a2=16,解得a=±eq\f(4\r(3),3).再進(jìn)一步推斷便可得到正確答案為C.解法二:設(shè)AB1直線方程為eq\b\lc\{\rc\(\a\vs4\al\co1(y=k(x+2),x2+y2=1))?(1+k2)x2+4k2x+4k2-1=0,Δ=0,k=±eq\f(\r(3),3),直線AB1方程為y=eq\f(\r(3),3)(x+2),直線AB2方程為y=-eq\f(\r(3),3)(x+2),可得B1(2,eq\f(4\r(3),3)),B2(2,-eq\f(4\r(3),3)),要使從A看B不被圓攔住,B縱坐標(biāo)即實(shí)數(shù)a的取值范圍為(-∞,-eq\f(4\r(3),3))∪(eq\f(4\r(3),3),+∞).9.若圓(x-3)2+(y+5)2=r2上有且只有兩個(gè)點(diǎn)到直線4x-3y-2=0的距離等于1,則半徑r的取值范圍是()A.(4,6)B.[4,6)C.(4,6]D.[4,6]答案A二、填空題10.已知直線x+y=a與圓x2+y2=4交于A,B兩點(diǎn),且|eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))|=|eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))|(其中O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a等于________.答案±2解析由|eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))|=|eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))|知OA⊥OB,所以由題意可得eq\f(|a|,\r(2))=eq\r(2),所以a=±2.11.過(guò)點(diǎn)M(1,2)的直線l將圓(x-2)2+y2=9分成兩段弧,其中的劣弧最短時(shí),直線l的方程為________.答案x-2y+3=0解析設(shè)圓心為N(2,0),由圓的性質(zhì)得直線l⊥MN時(shí),形成的劣弧最短,由點(diǎn)斜式得直線l的方程為x-2y+3=0.12.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點(diǎn),若|MN|≥2eq\r(3),則k的取值范圍是________.答案[-eq\f(3,4),0]解析如圖,記題中圓的圓心為C(3,2),作CD⊥MN于D,則|CD|=eq\f(|3k+1|,\r(1+k2)),于是有|MN|=2|MD|=2eq\r(|CM|2-|CD|2)=2eq\r(4-\f(9k2+6k+1,1+k2))≥2eq\r(3),即4-eq\f(9k2+6k+1,1+k2)≥3,解得-eq\f(3,4)≤k≤0.13.若直線y=x+b與曲線x=eq\r(1-y2)恰有一個(gè)公共點(diǎn),則b取值范圍是__________.答案-1<b≤1或b=-eq\r(2)解析x=eq\r(1-y2)?x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲線為半圓(如圖)當(dāng)直線與圓相切時(shí)或在l2與l3之間時(shí),適合題意.三、解答題14.已知圓C:x2+y2+2x-4y+3=0.若圓C的切線在x軸和y軸上的截距的確定值相等,求此切線的方程.解析∵切線在兩坐標(biāo)軸上截距的確定值相等,∴切線的斜率是±1.設(shè)切線方程為y=-x+b或y=x+c,分別代入圓C的方程得2x2-2(b-3)x+(b2-4b+3)=0或2x2+2(c-1)x+(c2-4c+3)=0,由于相切,則方程有等根,即b=3或b=-1,c=5或c=1.故所求切線方程為:x+y-3=0,x+y+1=0,x-y+5=0,x-y+1=0.15.已知圓C經(jīng)過(guò)點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).(1)求圓C的方程;(2)若eq\o(OP,\s\up6(→))·eq\o(OQ,\s\up6(→))=-2,求實(shí)數(shù)k的值;(3)過(guò)點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PMQN面積的最大值.解設(shè)圓心C(a,a),半徑為r.由于圓C經(jīng)過(guò)點(diǎn)A(-2,0),B(0,2),所以|AC|=|BC|=r,易得a=0,r=2,所以圓C的方程是x2+y2=4.(2)由于eq\o(OP,\s\up6(→))·eq\o(OQ,\s\up6(→))=2×2×cos〈eq\o(OP,\s\up6(→)),eq\o(OQ,\s\up6(→))〉=-2,且eq\o(OP,\s\up6(→))與eq\o(OQ,\s\up6(→))的夾角為∠POQ,所以cos∠POQ=-eq\f(1,2),∠POQ=120°,所以圓心到直線l:kx-y+1=0的距離d=1,又d=eq\f(1,\r(k2+1)),所以k=0.(3)設(shè)圓心O到直線l,l1的距離分別為d,d1,四邊形PMQN的面積為S.由于直線l,l1都經(jīng)過(guò)點(diǎn)(0,1),且l⊥l1,依據(jù)勾股定理,有deq\o\al(2,1)+d2=1.又易知|PQ|=2×eq\r(4-d2),|MN|=2×eq\r(4-d\o\al(2,1)),所以S=eq\f(1,2)·|PQ|·|MN|,即S=eq\f(1,2)×2×eq\r(4-d2)×2×eq\r(4-d\o\al(2,1))=2eq\r(16-4(d\o\al(2,1)+d2)+d\o\al(2,1)·d2)=2eq\r(12+d\o\al(2,1)·d2)≤2eq\r(12+(\f(d\o\al(2,1)+d2,2))2)=2eq\r(12+\f(1,4))=7,當(dāng)且僅當(dāng)d1=d時(shí),等號(hào)成立,所以S的最大值為7.老師備選題1.點(diǎn)P在圓x2+y2-8x-4y+11=0上,點(diǎn)Q在圓x2+y2+4x+2y-1=0上,則|PQ|的最小值是________.答案3eq\r(5)-3-eq\r(6)解析轉(zhuǎn)化為一個(gè)圓上的動(dòng)點(diǎn)到另一個(gè)圓圓心距離的最小值.2.已知:過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1相交于M、N兩點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)求證:eq\o(AM,\s\up6(→))·eq\o(AN,\s\up6(→))為定值;(3)若O為坐標(biāo)原點(diǎn),且eq\o(OM,\s\up6(→))·eq\o(ON,\s\up6(→))=12,求k的值.解析(1)解法一:∵直線l過(guò)點(diǎn)A(0,1)且斜率為k,∴直線l的方程為y=kx+1.將其代入圓C:(x-2)2+(y-3)2=1,得(1+k2)x2-4(1+k)x+7=0①由題意:△=[-4(1+k)]2-4×(1+k2)×7>0,得eq\f(4-\r(7),3)<k<eq\f(4+\r(7),3).解法二:同解法一得直線方程為y=kx+1,即kx-y+1=0,又圓心到直線距離d=eq\f(|2k-3+1|,\r(k2+1))=eq\f(|2k-2|,\r(k2+1)),∴d=eq\f(|2k-2|,\r(k2+1))<1,解得eq\f(4-\r(7),3)<k<eq\f(4+\r(7),3).(2)設(shè)過(guò)A點(diǎn)的圓的切線為AT,T為切點(diǎn),則|AT|2=|AM|·|AN|,|AT|2=(0-2)2+(1-3)2-1=7,∴|eq\o(AM,\s\up6(→))|·|eq\o(AN,\s\up6(→))|=7.依據(jù)向量的運(yùn)算:eq\o(AM,\s\up6(→))·eq\o(AN,\s\up6(→))=|eq\o(AM,\s\up6(→))|·|eq\o(AN,\s\up6(→))|·cos0°=7為定值.(3)設(shè)M(x1,y1),N(x2,y2),則由①得eq\b\lc\{\rc\(\a\vs4\al\co1(x1+x2=\f(4+4k,1+k2),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論