版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
兩個(gè)隨機(jī)變量的函數(shù)的分布
的分布
M=max(X,Y)及N=min(X,Y)的分布課堂練習(xí)小結(jié)
在第二章中,我們討論了一維隨機(jī)變量函數(shù)的分布,現(xiàn)在我們進(jìn)一步討論:
當(dāng)隨機(jī)變量X,Y的聯(lián)合分布已知時(shí),如何求出它們的函數(shù)Z=g(X,Y)的分布?
例1若X、Y獨(dú)立,P(X=k)=ak,k=0,1,2,…,P(Y=k)=bk,k=0,1,2,…,求
Z=X+Y的概率函數(shù).解=a0br+a1br-1+…+arb0
由獨(dú)立性r=0,1,2,…一、的分布解依題意
例2若X和Y相互獨(dú)立,它們分別服從參數(shù)為的泊松分布,證明Z=X+Y服從參數(shù)為于是i=0,1,2,…j=0,1,2,…的泊松分布.r=0,1,…即Z服從參數(shù)為的泊松分布.
例3設(shè)X和Y的聯(lián)合密度為f(x,y),求Z=X+Y的概率密度.這里積分區(qū)域D={(x,y):x+y≤z}解Z=X+Y的分布函數(shù)是:它是直線x+y=z及其左下方的半平面.
化成累次積分,得由概率密度與分布函數(shù)的關(guān)系,即得Z=X+Y的概率密度為:由X和Y的對稱性,fZ(z)又可寫成以上兩式即是兩個(gè)隨機(jī)變量和的概率密度的一般公式.
特別地,當(dāng)X和Y獨(dú)立,設(shè)(X,Y)關(guān)于X,Y的邊緣密度分別為fX(x),fY(y),則上述兩式化為:下面我們用卷積公式來求Z=X+Y的概率密度.卷積公式為確定積分限,先找出使被積函數(shù)不為0的區(qū)域例4若X和Y獨(dú)立,具有共同的概率密度求Z=X+Y的概率密度.解由卷積公式也即暫時(shí)固定故當(dāng)或時(shí),當(dāng)時(shí),當(dāng)時(shí),于是
例5若X和Y是兩個(gè)相互獨(dú)立的隨機(jī)變量,具有相同的分布
N(0,1),求Z=X+Y的概率密度.解由卷積公式令得可見Z=X+Y服從正態(tài)分布N(0,2).用類似的方法可以證明:
若X和Y獨(dú)立,
結(jié)論又如何呢?
此結(jié)論可以推廣到n個(gè)獨(dú)立隨機(jī)變量之和的情形,請自行寫出結(jié)論.
若X和Y獨(dú)立,具有相同的分布
N(0,1),則Z=X+Y服從正態(tài)分布N(0,2).有限個(gè)獨(dú)立正態(tài)變量的線性組合仍然服從正態(tài)分布.更一般地,可以證明:二、M=max(X,Y)及N=min(X,Y)的分布
設(shè)X,Y是兩個(gè)相互獨(dú)立的隨機(jī)變量,它們的分布函數(shù)分別為FX(x)和FY(y),我們來求M=max(X,Y)及N=min(X,Y)的分布函數(shù).FM(z)=P(M≤z)=P(X≤z,Y≤z)由于X和Y
相互獨(dú)立,于是得到M=max(X,Y)的分布函數(shù)為:=P(X≤z)P(Y≤z)FM(z)1.M=max(X,Y)的分布函數(shù)即有FM(z)=FX(z)FY(z)即有FN(z)=1-[1-FX(z)][1-FY(z)]=1-P(X>z,Y>z)FN(z)=P(N≤z)=1-P(N>z)2.N=min(X,Y)的分布函數(shù)由于X和Y
相互獨(dú)立,于是得到N=min(X,Y)的分布函數(shù)為:=1-P(X>z)P(Y>z)FN(z)
設(shè)X1,…,Xn是n個(gè)相互獨(dú)立的隨機(jī)變量,它們的分布函數(shù)分別為
我們來求M=max(X1,…,Xn)和N=min(X1,…,Xn)的分布函數(shù).(i=1,…,n)
用與二維時(shí)完全類似的方法,可得N=min(X1,…,Xn)的分布函數(shù)是
M=max(X1,…,Xn)的分布函數(shù)為:
特別地,當(dāng)X1,…,Xn相互獨(dú)立且具有相同分布函數(shù)F(x)時(shí),有
例6設(shè)系統(tǒng)L由兩個(gè)相互獨(dú)立的子系統(tǒng)連接而成,連接的方式分別為(i)串聯(lián),(ii)并聯(lián),(iii)備用(當(dāng)系統(tǒng)損壞時(shí),系統(tǒng)開始工作),如下圖所示.設(shè)的壽命分別為已知它們的概率密度分別為其中且試分別就以上三種連接方式寫出的壽命的概率密度.XYXYXY
需要指出的是,當(dāng)X1,…,Xn相互獨(dú)立且具有相同分布函數(shù)F(x)時(shí),常稱M=max(X1,…,Xn),N=min(X1,…,Xn)為極值.由于一些災(zāi)害性的自然現(xiàn)象,如地震、洪水等等都是極值,研究極值分布具有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年外研銜接版八年級地理上冊階段測試試卷含答案
- 四年級數(shù)學(xué)(小數(shù)加減運(yùn)算)計(jì)算題專項(xiàng)練習(xí)與答案
- 現(xiàn)代農(nóng)業(yè)商業(yè)模式創(chuàng)新案例分析
- 健身休閑行業(yè)服務(wù)交易合同
- 戶外廣告廣告位出租合同模板
- 2025年滬教版九年級地理下冊月考試卷含答案
- 2025年人教A新版選擇性必修3化學(xué)下冊月考試卷含答案
- 2025年新科版高一生物上冊月考試卷含答案
- 2025年上外版選修化學(xué)上冊階段測試試卷含答案
- 2025年外研版九年級物理下冊月考試卷含答案
- 二零二五年度無人駕駛車輛測試合同免責(zé)協(xié)議書
- 北京市海淀區(qū)2024-2025學(xué)年高一上學(xué)期期末考試歷史試題(含答案)
- 常用口服藥品的正確使用方法
- 2025年湖北華中科技大學(xué)招聘實(shí)驗(yàn)技術(shù)人員52名歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年鉆探工程勞務(wù)協(xié)作協(xié)議樣式版B版
- 《心肺復(fù)蘇機(jī)救治院內(nèi)心搏驟?;颊咦o(hù)理專家共識》解讀
- 計(jì)算機(jī)二級WPS考試試題
- 2023中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn)-注射相關(guān)感染預(yù)防與控制
- 臨床研究技術(shù)路線圖模板
- GB∕T 2099.1-2021 家用和類似用途插頭插座 第1部分:通用要求
- 超潔凈管道(CL-PVC)施工技術(shù)
評論
0/150
提交評論