版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
January2025
Mcsey
&company
Automotive&AssemblyPractice
Software-defined
hardwareintheageofAI
Software-definedhardwareisreshapingmultipleindustriesasadvancesinAIenablenewcapabilitiesanddramaticallyreducedevelopmentcosts.
byAliRizvi,AniKelkar,andPhilippKampshoffwithSarthakVaish
Overthepasttwodecades,theshiftfromfixed-functionhardwaretosoftware-defined
hardwarehasrevolutionizedindustriesrangingfromnetworkingtomobilecommunications.With
software-definedhardware,developerscanimproveproductsandservicesbycontinuallyupdatingsoftwareratherthanundertakingmorecostlyandtime-consuminghardware
upgrades.Devicesthatwereoncerigidandtaskspecificarenowbecomingprogrammableandflexible,allowingthemtohandlenewtasksanddemands.
Despitethefunctionalbenefitsofsoftware-definedhardware,itsusewastraditionallylimitedtoindustriesthatofferedsubstantialunitvolumes,suchassmartphones,toamortizethefixed
developmentcosts.Inthesesectors,physicallyreplacingorupgradingdevicesismuchmore
expensivethanmakingsoftwareupdates.(Seesidebar“Transformingindustriesthrough
software-definedhardware”formoreinformationonearlyusecases.)Industriesthathadlowerhardwarevolumesdidnotfeelthesameurgency,becausesoftwaredevelopmentcostswereinlinewithorexceededthosefordevicereplacement.Today,however,AIischangingthecost-
benefitbalancebyautomatingmanyroutinesoftwaredevelopmenttasks,therebyreducingthetimeandlaborrequiredandexpandingthefunctionalcapabilitiesofthesoftware.
Beyondimprovingefficiency,software-definedhardwaremayhelpcompanieswinnew
customersandincreasebrandloyaltybyimprovingdeviceperformanceandenablinggreater
Transformingindustriesthroughsoftware-definedhardware
Software-definedhardwarefirstdemonstrateditsabilitytotransformentireindustriesaround
2009,whendevelopersintroducedsoftware-definednetworking(SDN).Bydecouplingnetwork
controlfromthephysicalinfrastructure,SDNenableddynamictrafficmanagementandprovided
moreflexibilityinnetworkscalinganddeployment.Manycompanies,includingCisco,VMware,andJuniperNetworks,havealreadyshiftedtoSDNintheirdatacenters.
Inthe2000s,thesmartphonerevolutionbroughtthebenefitsofsoftware-definedhardwaredirectlytoconsumers.Unlikeearliermobilephoneswithfixedcapabilities,smartphoneplatformscouldbe
continuouslyredefinedbyappdevelopers,blurringthelinebetweenhardwareandsoftware.By2012,smartphoneappscouldallowuserstocustomizetheirdevicesforGPSnavigation,photoediting,andothertasks.
Software-definedhardwareintheageofAI2
personalization.Acar’sinfotainmentsystem,forinstance,couldprovidecustomized
entertainmentandstreamingoptionsbasedonthedriver’spreviouschoices.Ifthesoftware-definedhardwareincorporatesAIormachinelearning(ML)algorithms,itmaytakeproduct
performancetoevengreaterheightsandlearnfrominteractionswithcustomers.
AsAIenablesfurtherproductdevelopmentcostreductions,evenmoreindustries,includingaerospace,medicaldevices,andconsumerdevices,couldacceleratescalingofsoftware-
definedhardware.First,however,theymustupdatetheirorganizationalstructuresand
operationstomaximizeAI’sbenefits.Here’salookatsomechangesthatmayhelp,withafocusonexamplesfromtheautomotiveindustry.
BenefitsofAIinsoftware-definedhardware
Formanycompanies,theadvancesinAIhavecomeatanauspicioustime.Softwarecomplexityhasbeenincreasingsteadilyandcouldriseevenfurther.Considertheautomotivesector:since2021,thecomplexityoftheaveragevehiclesoftwareplatformandthetotaleffortrequiredto
createithavebothincreasedbyabout40percentannually(exhibit).Overthesameperiod,however,softwaredevelopmentproductivityhasincreasedonlybyabout6percentperyear.
UsingAItooptimizesoftware-definedhardwaredevelopment
AdvancesinAIareexpandingthetoolboxofproductdevelopersandimprovingthedevelopment
ofsoftware-definedhardwarebyautomating,optimizing,andenhancingvariousstagesofdesign,development,andtesting.
AI-assisteddesign.SeveralgenerativeAI(genAI)toolscanhelpengineersdevelophardware
descriptionsandlayouts,reducingmanualeffort.Forinstance,onetooloptimizeshardware
architecturedesignbasedonspecifiedconstraintsandobjectives.Othernew
generativedesign
systemscanexploreamuchlargeruniverseofpossiblesolutionsthanthepreviousgenerationoftools.Bycomparingtheresultsofthousandsofsimulations,theycanhelpidentifyadesignthatdeliversthemostfavorablecombinationofattributes.
Software–hardwarecodevelopment.UsingAIagentsduringproductdevelopmentcanhelp
bridgegapsbetweensoftwareandhardwaredesignbyensuringconsistentrequirementsacrossiterations.AIagentscanalsoensurethatthehardwareiseasytoprogramandthesoftwareis
optimizedforhardwareperformance(forinstance,AIcanadjustsoftwareroutinestoimproveutilizationofGPUs,specializedaccelerators,orotherresources).
Hardwareoptimization.AIalgorithmscanoptimizetheallocationofresources,suchasmemory,logicblocks,andprocessingunits,forsoftware-definedhardwaretomeetobjectivesandenableadaptationsifandwhenproductrequirementsevolve.AIcanalsoidentifyissuesandflawsearlyinthedesignprocessthroughtheuseofsimulationsandimproveproductreliabilityand
Software-definedhardwareintheageofAI3
Exhibit
vehiclesoftwareplatformcomplexityandtheeffortrequiredtocompletedevelopmentprojectsareincreasing,whileproductivityremainsflat.
Automotivesoftwarecomplexity,effort,andproductivity,index(2021=100)
DesigncomplexityprojecteffortDevelopmentproductivity
800700
500400300200
CAGR:42%o
CAGR:36%
CAGR:6%
800700
500400300200
202120242027202120242027202120242027
source:Basedonanalysisof280software-intensiveautomotiveplatformprojectsintheNumetricssoftwareindustrydatabase
Mckinsey&company
security.Hardwareoptimizationcancontinuebeyondtheinitialdesignstagebecauseedgeprocessingallowsengineerstomanageresourcesdynamicallytomeetobjectives.
Acceleratedtesting.Deep-learningsurrogatesnowallowengineerstoreplacemanyphysicaltestswithfastervirtualassessmentsthatcostless.
WithAIhandlingthesetasks,morecompanieswillbeabletocreatesoftware-definedhardwareforthefirsttimeoraccelerateinnovation.London-basedtechnologycompanyWayve,for
example,isincorporatingitsLINGO-1genAImodelintoitsself-driving-carsoftwaretoanalyzedriverinputsanddatafromvehiclesensors,includingimagescapturedonvideo.1Using
LINGO-1capabilities,thevehicle’ssoftwarewillthengenerateanswerstocommonquestions,
suchas“Whydidyoustopatthispoint?”Similarly,WaymousesCarcraft,asoftwareprogram
thatmodelshowvirtualcarsnavigatedifferenton-roadscenariosinactualcities,toimprove
autonomousdriving.2Thevirtualvehiclestravelabouteightmillionmilesperday,muchofthisincomplicatedtrafficsituations,suchasrotaries.
1“UnveilingLINGO-1’sshowandtellcapabilitywithreferentialsegmentation,”Wayve,November15,2023.
2AlexisC.Madrigal,“InsideWaymo’ssecretworldfortrainingself-drivingcars,”Atlantic,August23,2017.
Software-definedhardwareintheageofAI4
UsingAItocreatebetterendproductsandservices
Thebenefitsofsoftware-definedhardware,enhancedbyAI,translateintobetterproductsandservicesforendcustomers.Asanexample,comparethecustomerexperienceatelectricvehicle
(EV)start-upswiththatoftraditionalOEMs.NewEVOEMs,suchasTesla,whichwerenot
constrainedbylegacyhardware,haveusedsoftware-definedhardwareanddeliveredover-the-air(OTA)updatestoimprovevehicleperformance,efficiency,andfeaturesbeginningin2018.
Thatconvenienceisnotpossiblewitholder,hardware-centriccardesigns.OtherOEMsarealsoinvestinginsoftware-definedhardwareorformingjointventurestocreateit.
Hereareafewotherwaysthatsoftware-definedhardwareandAIcanimproveendproductsandservices.Notethattheseenhancementsrelatetoproductsthatcompaniessellto
consumersorotherbusinesses.Companiesmayalsousesoftware-definedhardwaretoimprovetheirownoperations(seesidebar“Makingawarehousemoreefficient”).
Optimalhardwareperformanceandlifetime.AIcananalyzedatafromdevices,suchascarsandmedicalequipment,tooptimizesoftwareconfigurationsforbothefficiencyandperformance.
Forinstance,onenewEVOEMusedAItoreducethenumberofelectroniccontrolunitsinitsvehiclesfromasmanyas80insomelegacysystemstounderten.
Personalizeduserexperiences.GenAIcanmakesoftware-definedsystemsmoreintelligent.In
Makingawarehousemoreefficient
Althoughcompaniesmaychoosetofocusondevelopingsoftware-definedhardwareforconsumerorbusinessclients,theycanalsousethemtoimprovetheirinternaloperations.WiththeadditionofAIcapabilities,software-definedhardwarecandeliverfarmorethanitcouldevenafewyearsago.
Considerawarehousesettinginwhichhumansinteractregularlywithvarioustypesofrobots.Duringanidealinteractionforautomatedpicking,arobotindicatestheitemtobepickedanditslocation.
Thewarehouseassociatethenpicksuptheitem,scansit,andplacesitinatote.Butwhenthereisaproblem—forinstance,anitemisdamagedormissing—theworkerhastoflagtherequestasanerrorthatneedstoberesolvedbyacommandcenterteam,resultinginlostproductivity.Human–machineinterfacesthatincorporategenerativeAIwouldalreadyhaveaccesstotheinformationneededfor
problem-solving,allowingtheworkertoaddresstheissuequickly.
Software-definedhardwareintheageofAI5
smarthomes,forinstance,genAIsystemscouldlearnahousehold’shabitsandautomaticallyadjusteverythingfromlightingtosecurity.Ifthesystemsreliedontraditionalhardware,ratherthansoftware-definedhardware,suchadjustmentswouldbedifficultandexpensivetomake.
Manymedicaldevicesarebecomingincreasinglysoftwaredriven,withcompaniessuchas
MedtroniccreatingAI-enhancedsystemsthatadaptbasedonpatientdata,suchasvitalsigns.
Intheconsumersector,devicessuchasAmazonEchoalreadyrelyonsoftwaretointroducenewfeatures,improvetheirintelligence,andenhancetheuserexperience.AsmorecompaniesbeginincorporatingAIintotheirproducts,theycanusesoftware-designedhardwaretoprovidemorepersonalizedservice.Forinstance,severalnewentrantshavelaunchedgen-AI-enableddigital
personalassistants.
Betterhuman–machineinterfaces.Human–machineinterfaces(HMIs)havelongallowed
peopleto
interactwithdifferentdevices
,rangingfromindustrialmachinestopersonaldevicestoservicerobots,butthecommunicationchannelscanbefrustratingorimperfect.UsingAI,somecompaniesareattemptingtoimprovethem.Withintheautomotivesector,forinstance,the
locationtechnologycompanyTomTomhasdevelopedanAIin-vehicleassistantthatappliesrecentadvancesinAItoengageincomplex,multifacetedconversations.Thevoicesystemproactivelygivesdriversusefulinformation,ratherthanwaitingforthemtoaskquestions.
BMW’sPanoramicVisionisanewheads-updisplaythatprojectsinformation,suchasvehiclespeed,ontowindshields.ItusesAItotrackthedriver’seyemovementstoensurethat
informationalwaysappearsinaclear,easy-to-seelocationthatwillnotinterferewiththeviewoftheroad.Themostimportantinformationappearsinadarkenedsectionatthebaseofthe
windshield,whilelessimportantdataareprojectedslightlyhigherontoaclearsection.The
technologycanautomaticallydeterminewhencertaininfoshouldbedisplayedinapriorityspot.Forinstance,itprominentlydisplaysnavigationalinformationtohelpwithparkingwhenadriverislookingfororenteringaspot.
Applicationoffoundationmodels.Foundationmodelsaretrainedonvastdatasetsand
leverageadvanced-machine-learningtechniquestocreatebetterhardware.Theyhavealreadybeenusedtooptimizeperformanceandfunctionalityinenterpriseandconsumerproducts.
EmbodiedAI,whichletsrobotsandotherintelligentdevicesinteractwiththeirenvironmentandlearnfromexperience,couldbethenextimportantapplication.Somefoundation-model-basedroboticsstart-upsarehopingtocreatemoregeneralizedhardwarewithbroaderfunctionality
thatimprovesovertime.(Anewapproachtomodelcreationmayhelpexpeditedevelopment,asdescribedinthesidebar“Whataremodularfoundationmodels?”)
Anewwayofworking
HarnessingAI’spowermayrequirecompany-wideoperationalchangesorindustry-wide
Software-definedhardwareintheageofAI6
Whataremodularfoundationmodels?
Withmodularfoundationmodels,AIcapabilitiesaredividedintosmall,distinctunits.Developerscanconfigurethemodulestoworktogetherindifferentways,muchlikehowdifferentpartsofthehumanbraincommunicate,andadjustthemwhenneeded.Themodulardesignmaybeparticularly
helpfulforlargelanguagemodels,whichcanunderstandandanalyzetext.Advantagesofconfigurablemodelsincludethefollowing:
—Efficiency.Byactivatingonlythenecessarymodulesforagiventask,modularfoundationmodelssignificantlyreducecomputationaloverheadandenergyconsumption.
—Adaptability.Modulescanbeadded,removed,ormodifiedtoadapttonewtasksandevolvingrequirements,makingthemodelshighlyflexible.
—Scalability.Modulardesignenablesincrementalimprovementsinperformance,allowingforgradualscalingandeliminatingtheneedforcompleteretraining.
—Privacy.Bypartitioningamodelintosmallmodulesthatperformspecializedtasks,sensitiveinformationcanbeisolated,enhancingprivacyandsecurity.
initiativesrelatedtocollaboration,marketentry,decoupledhardwareandsoftwaredevelopment,anddatasecurityandprivacy.
Innovativecollaborations
AsmorecompaniesbeginusingAItocreatesoftware-definedhardware,theyshouldensure
thathardwareengineersandsoftwaredeveloperscollaboratefromtheprogram’soutset.Theyalsoshouldensure,veryearlyon,thatthehardwaredesignisflexibleenoughtoallowsoftware-designedhardwaretomakeupdates.
Insomecases,companiesmayformnontraditionalpartnerships,suchaswithtechstart-ups,tocreatesoftware-definedhardware.Theycanfacilitatesuchcollaborationbymandatingtheuseofstandardprotocolsthatallowdynamicmanagementofnetworkdevicesusedinsoftware-
definedhardware,includingtheOpenFlowandtheNetworkConfiguration(NETCONF)
protocols.Whilestandardprotocolscanbeusefulinanycollaboration,theyareparticularly
importantwhentwopartnershaveneverworkedtogetheranddonotunderstandhowtheothercompanyoperates.
Someprotocolsareindustryspecific,includingtheAutomotiveOpenSystemArchitecture
Software-definedhardwareintheageofAI7
(AUTOSAR),whichprovidesarobustframeworkfordevelopingsoftware-definedautomotivehardware.AUTOSARofferstwocomplementarystandards:ClassicAUTOSAR,whichiswellsuitedfortraditionalembeddedsystemswithstrictreal-timerequirements,andAdaptive
AUTOSAR,whichisdesignedformorecomplex,dynamic,andsoftware-intensivefunctions.
AdaptiveAUTOSARenablesthecreationofscalable,modular,andsecureapplications,someofwhichmayinvolveAIfunctionalities.Forinstance,AdaptiveAUTOSARiswellsuitedtomanaging
advanced-driver-assistancesystems(ADAS),whichmayincludeAI-basedperceptionand
decision-making.AdaptiveAUTOSARalsosupportsthedeploymentofapplicationsthatinteractwithradar,ultrasonic,andothersensorsessentialforADAS,althoughspecializedAIframeworksmightstillberequiredtohandleothertasks,suchasdataprocessing.
Otherprotocolsthatmayacceleratethedevelopmentofsoftware-definedhardwareincludetheSafety-OrientedArchitectureforFunctionalSafetyinEdgeComputingprotocol,sponsoredbytheScalableOpenArchitectureforEmbeddedEdge(SOAFEE)initiative,whichfocuseson
creatingsafetystandardsforedgedevices.
Byfollowingthesecommonframeworks,developerscanbuildflexible,scalable,andefficientsystemsthatadapttoevolvingtechnologicaldemands.
Astheuniverseofpartnersexpandsanddiversifies,companiescanencouragemoreAI-relatedinnovationbyloweringbarrierstomarketentry.Forinstance,theycouldeliminatelicensingfeesforstart-upsthatwanttodevelophardwarebasedontheirtechnology.Overall,companies
shouldfocusonenablingpotentialpartners,ratherthancontrollingtheiractivities.
Decoupledhardwareandsoftwaredevelopmentcycles
Tocreatesoftware-definedhardware,companiesshoulddecouplesoftwareandhardware
developmenttoenablegreaterflexibilityandinnovation.Thisdoesnotmeanthateachelementevolveswithnoinputfromtheothergroup,sincecollaborationismoreimportantthaneverwithsoftware-definedhardware.Itdoesmean,however,thathardwareandsoftwareeachfollow
theirowntimelinesandupdatecycles.Thepacesetbythetwogroupswillnotnecessarilybeinsync.
Decouplingallowshardwareengineerstodesignandoptimizephysicalcomponents
independently,whilesoftwaredeveloperscancreateandupdateapplicationswithoutbeingconstrainedbyhardwarelimitations.Byutilizingabstractionlayersandstandardinterfaces,teamscaniterateonsoftwarefeaturesandfunctionalitiesrapidly,fosteringamoreagile
developmentprocess.Decouplingalsofacilitateseasierintegrationofnewtechnologiesand
upgrades,ashardwarecanevolvetomeetchangingdemandswithoutrequiringacompleteoverhaulofthesoftwarestack.Ultimately,thisapproachenhancescollaborationacross
disciplinesandacceleratestimetomarketfornewproductsandsolutions.
LegacyautomotiveOEMsareamongthosedecouplinghardwareandsoftwaredevelopment,
Software-definedhardwareintheageofAI8
Findmorecontentlikethisonthe
MckinseyInsightsAPP
scan·Download·personalize
partlyb
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古自治區(qū)錫林郭勒盟三縣聯(lián)考2024-2025學(xué)年八年級上學(xué)期1月期末物理試題(無答案)
- 保安員競賽理論知識考試試題題庫及答案
- 2025年度廠房租賃合同書(含環(huán)保驗收條款)3篇
- 【產(chǎn)業(yè)圖譜】2024年江陰市重點產(chǎn)業(yè)規(guī)劃布局全景圖譜(附產(chǎn)業(yè)現(xiàn)狀、產(chǎn)業(yè)布局、產(chǎn)業(yè)發(fā)展規(guī)劃等)
- 2024小班幼兒的評語(33篇)
- 2024版期貨融資居間合同協(xié)議范本
- 2024鐵精粉倉儲物流服務(wù)合同樣本3篇
- 福建省南平市九三英華高級中學(xué)高一化學(xué)模擬試卷含解析
- 2025年度存量房租賃市場調(diào)控合作協(xié)議3篇
- 2024版安全生產(chǎn)與環(huán)境保護(hù)綜合管理協(xié)議
- EGD殺生劑劑化學(xué)品安全技術(shù)說明(MSDS)zj
- GB/T 23858-2009檢查井蓋
- 超分子化學(xué)-第三章 陰離子的絡(luò)合主體
- 2023年吉林電力股份有限公司招聘筆試題庫及答案解析
- 皮帶崗位題庫解讀
- 食品企業(yè)產(chǎn)品出廠檢驗報告
- 鍋爐本體水壓試驗記錄
- 綜治工作中心信訪穩(wěn)定和矛盾糾紛排查化解工作流程圖
- 牛初乳知識課件
- 鼻出血鼻孔填塞-臨床實踐能力訓(xùn)練考核標(biāo)準(zhǔn)
- 初中中考英語總復(fù)習(xí)《代詞動詞連詞數(shù)詞》思維導(dǎo)圖
評論
0/150
提交評論