版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省資陽市樂至縣良安中學(xué)2025屆高考仿真卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.2.1777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.3.已知雙曲線()的漸近線方程為,則()A. B. C. D.4.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切5.已知函數(shù)若恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.127.祖暅原理:“冪勢(shì)既同,則積不容異”.意思是說:兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知向量,,若,則()A. B. C. D.9.設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令.有以下6個(gè)論斷:①是奇函數(shù)時(shí),是奇函數(shù);②是偶函數(shù)時(shí),是奇函數(shù);③是偶函數(shù)時(shí),是偶函數(shù);④是奇函數(shù)時(shí),是偶函數(shù)⑤是偶函數(shù);⑥對(duì)任意的實(shí)數(shù),.那么正確論斷的編號(hào)是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤10.已知實(shí)數(shù),滿足,則的最大值等于()A.2 B. C.4 D.811.已知數(shù)列中,,若對(duì)于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.12.2019年10月1日,中華人民共和國(guó)成立70周年,舉國(guó)同慶.將2,0,1,9,10這5個(gè)數(shù)字按照任意次序排成一行,拼成一個(gè)6位數(shù),則產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為A.96 B.84 C.120 D.360二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件,則的最小值為______.14.函數(shù)在上的最小值和最大值分別是_____________.15.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為________16.設(shè)向量,,且,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對(duì)其進(jìn)行兩次檢測(cè),當(dāng)?shù)谝淮螜z測(cè)合格后,才能進(jìn)行第二次檢測(cè).第一次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,,第二次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,.兩次檢測(cè)過程相互獨(dú)立,設(shè)經(jīng)過兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.18.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點(diǎn),且.(1)求證:平面ACE;(2)當(dāng)PA的長(zhǎng)為何值時(shí),AC與平面PCD所成的角為?19.(12分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.20.(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.21.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對(duì)于函數(shù)的圖象上兩點(diǎn),存在,使得函數(shù)的圖象在處的切線.求證:.22.(10分)在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語數(shù)外3門全國(guó)統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學(xué)、生物、地理、政治4門科目中任選2門,后三科的高考成績(jī)按新的規(guī)則轉(zhuǎn)換后計(jì)入高考總分.相應(yīng)地,高校在招生時(shí)可對(duì)特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級(jí)有學(xué)生1200人,現(xiàn)從中隨機(jī)抽取40人進(jìn)行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計(jì)表:序號(hào)選科情況序號(hào)選科情況序號(hào)選科情況序號(hào)選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學(xué)規(guī)定:每個(gè)選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個(gè)選修班(當(dāng)且僅當(dāng)一門科目的選課班級(jí)總數(shù)為奇數(shù)時(shí),允許這門科目的1位老師只教1個(gè)班).已知雙超中學(xué)高一年級(jí)現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計(jì)總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請(qǐng)創(chuàng)建列聯(lián)表,運(yùn)用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡(jiǎn)章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報(bào)名.現(xiàn)從雙超中學(xué)高一新生中隨機(jī)抽取3人,設(shè)具備高校專業(yè)報(bào)名資格的人數(shù)為,用樣本的頻率估計(jì)概率,求的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長(zhǎng)為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.2、D【解析】
根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.3、A【解析】
根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.5、D【解析】
由恒成立,等價(jià)于的圖像在的圖像的上方,然后作出兩個(gè)函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因?yàn)橛珊愠闪?,分別作出及的圖象,由圖知,當(dāng)時(shí),不符合題意,只須考慮的情形,當(dāng)與圖象相切于時(shí),由導(dǎo)數(shù)幾何意義,此時(shí),故.故選:D【點(diǎn)睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.6、B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B7、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.8、A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點(diǎn)睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.9、A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí),則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,,此時(shí),故⑥錯(cuò)誤;故③④正確.故選:A【點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】
畫出可行域,計(jì)算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.11、B【解析】
先根據(jù)題意,對(duì)原式進(jìn)行化簡(jiǎn)可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對(duì)于任意的,不等式恒成立即令可得且即可得或故選B【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)的求法以及函數(shù)的性質(zhì)的運(yùn)用,屬于綜合性較強(qiáng)的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項(xiàng)公式和后面的轉(zhuǎn)化函數(shù),屬于難題.12、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個(gè),其中含有2個(gè)10的排列數(shù)共個(gè),所以產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,觀察圖形斜率最小在點(diǎn)B處,聯(lián)立,解得點(diǎn)B坐標(biāo),即可求得答案.【詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡(jiǎn)單題.14、【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題15、1【解析】
作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值?!驹斀狻坑?,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,此時(shí)取得最大值。由,解得,代入直線,得?!军c(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問題的解法——平移法。16、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測(cè)后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,服從二項(xiàng)分布,利用二項(xiàng)分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測(cè)后合格的概率分別為,,,由題意,,.【點(diǎn)睛】本題考查相關(guān)系數(shù)的求解,考查二項(xiàng)分布的期望,是中檔題.18、(1)證明見解析;(2)當(dāng)時(shí),AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過作,可證平面,根據(jù)計(jì)算,得出的大小,再計(jì)算的長(zhǎng).【詳解】(1)證明:連接BD交AC于點(diǎn)O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時(shí),AC與平面PCD所成的角為.【點(diǎn)睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計(jì)算,屬于中檔題.19、(1)(2){1,2}.【解析】
(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識(shí)求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因?yàn)?,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因?yàn)檎淼?,設(shè),則,所以單調(diào)遞增,又因?yàn)?,所以存在,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因?yàn)?,所以存在,使得,即,?dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因?yàn)?,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究極值問題一般轉(zhuǎn)化為導(dǎo)數(shù)的零點(diǎn)問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當(dāng)構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強(qiáng),難度較大,側(cè)重考查數(shù)學(xué)抽象和邏輯推理的核心素養(yǎng).20、(1);(2)存在,.【解析】
(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時(shí),可求得,求得,②當(dāng)直線的斜率存在且不為0時(shí),設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時(shí),,此時(shí),②當(dāng)直線的斜率存在且不為0時(shí),設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【點(diǎn)睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長(zhǎng)公式的相關(guān)問題,當(dāng)兩直線的斜率具有關(guān)系時(shí),可能通過斜率的代換得出另一條線段的弦長(zhǎng),屬于中檔題.21、(1)見解析(2)見證明【解析】
(1)對(duì)函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導(dǎo)數(shù)方法判斷出的單調(diào)性,進(jìn)而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域?yàn)?,,令,得?①當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為.②當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞減;或時(shí),,函數(shù)單調(diào)遞增.此時(shí),的減區(qū)間為,增區(qū)間為,.③當(dāng)時(shí),時(shí),,函數(shù)單調(diào)遞增;此時(shí),的減區(qū)間為.綜上,當(dāng)時(shí),的減區(qū)間為,增區(qū)間為:當(dāng)時(shí),的減區(qū)間為,增區(qū)間為.;當(dāng)時(shí),增區(qū)間為.(2)證明:由題意及導(dǎo)數(shù)的幾何意義,得由(1)中得.易知,導(dǎo)函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因?yàn)?,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,通常需要對(duì)函數(shù)求導(dǎo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄭州商貿(mào)旅游職業(yè)學(xué)院《單片機(jī)應(yīng)用課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)2024年藝術(shù)教育發(fā)展年度報(bào)告
- 浙江電力職業(yè)技術(shù)學(xué)院《纖維化學(xué)與物理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)春大學(xué)《衛(wèi)生財(cái)務(wù)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 生產(chǎn)調(diào)度中的敏捷性管理策略
- 餐飲新員工安全訓(xùn)練模板
- AI企業(yè)技術(shù)路演模板
- 水的化學(xué)屬性模板
- 生物制藥業(yè)策略講解模板
- 親子活動(dòng)相冊(cè)制作模板
- 2025年度愛讀書學(xué)長(zhǎng)主辦的讀書挑戰(zhàn)賽組織合同
- 2024年滄州經(jīng)濟(jì)開發(fā)區(qū)招聘社區(qū)工作者筆試真題
- 2025年安徽省銅陵市公安局交警支隊(duì)招聘交通輔警14人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 公共政策分析 課件 第8章政策評(píng)估;第9章政策監(jiān)控
- 人教版八年級(jí)上學(xué)期物理期末復(fù)習(xí)(壓軸60題40大考點(diǎn))
- 企業(yè)環(huán)保知識(shí)培訓(xùn)課件
- 2024年度管理評(píng)審報(bào)告
- 暨南大學(xué)《微觀經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 醫(yī)藥銷售合規(guī)培訓(xùn)
- DB51-T 5038-2018 四川省地面工程施工工藝標(biāo)準(zhǔn)
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案
評(píng)論
0/150
提交評(píng)論