版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽六安市第一中學(xué)2025屆高考數(shù)學(xué)五模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.32.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=03.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.64.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.5.某幾何體的三視圖如圖所示,若圖中小正方形的邊長(zhǎng)均為1,則該幾何體的體積是A. B. C. D.6.已知向量,,,若,則()A. B. C. D.7.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.的展開式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.409.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.67410.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)12.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則“”是“”的__________條件.14.在長(zhǎng)方體中,,,,為的中點(diǎn),則點(diǎn)到平面的距離是______.15.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.16.已知函數(shù),則曲線在點(diǎn)處的切線方程是_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)對(duì)于給定的正整數(shù)k,若各項(xiàng)均不為0的數(shù)列滿足:對(duì)任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.18.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.19.(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.20.(12分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對(duì)出現(xiàn)例如,豌豆攜帶這樣一對(duì)遺傳因子:使之開紅花,使之開白花,兩個(gè)因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花.生物在繁衍后代的過(guò)程中,后代的每一對(duì)遺傳因子都包含一個(gè)父系的遺傳因子和一個(gè)母系的遺傳因子,而因?yàn)樯臣?xì)胞是由分裂過(guò)程產(chǎn)生的,每一個(gè)上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過(guò)程都是相互獨(dú)立的.可以把第代的遺傳設(shè)想為第次實(shí)驗(yàn)的結(jié)果,每一次實(shí)驗(yàn)就如同拋一枚均勻的硬幣,比如對(duì)具有性狀的父系來(lái)說(shuō),如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對(duì)母系也一樣.父系?母系各自隨機(jī)選擇得到的遺傳因子再配對(duì)形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機(jī)雜交實(shí)驗(yàn)中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實(shí)際上是父系和母系中兩個(gè)遺傳因子的個(gè)數(shù)之比.基于以上常識(shí)回答以下問(wèn)題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對(duì)某一植物,經(jīng)過(guò)實(shí)驗(yàn)觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個(gè)體,在進(jìn)行第一代雜交實(shí)驗(yàn)時(shí),假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(duì)(2)中的植物進(jìn)行雜交實(shí)驗(yàn),每次雜交前都需要剔除性狀為的個(gè)體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項(xiàng)公式,如果這種剔除某種遺傳性狀的隨機(jī)雜交實(shí)驗(yàn)長(zhǎng)期進(jìn)行下去,會(huì)有什么現(xiàn)象發(fā)生?21.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.22.(10分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡(jiǎn)得,所以.故選:B【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.2、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評(píng):本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.3、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.4、B【解析】
根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.5、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.6、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問(wèn)題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.7、B【解析】
根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【詳解】因?yàn)椋鶠榉橇愕钠矫嫦蛄?,存在?fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時(shí),滿足,但此時(shí),不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.【點(diǎn)睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時(shí)注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.8、A【解析】
化簡(jiǎn)得到,再利用二項(xiàng)式定理展開得到答案.【詳解】展開式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.9、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)椋?,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問(wèn)題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問(wèn)題多考查求值問(wèn)題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.10、A【解析】
根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對(duì)任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對(duì)任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.11、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過(guò)程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過(guò)程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問(wèn)題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.12、B【解析】
根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問(wèn)題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.二、填空題:本題共4小題,每小題5分,共20分。13、充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點(diǎn)睛】本題考查充分必要條件的判斷,可利用定義來(lái)判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來(lái)判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來(lái)判斷,本題屬于容易題.14、【解析】
利用等體積法求解點(diǎn)到平面的距離【詳解】由題在長(zhǎng)方體中,,,所以,所以,設(shè)點(diǎn)到平面的距離為,解得故答案為:【點(diǎn)睛】此題考查求點(diǎn)到平面的距離,通過(guò)在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點(diǎn).15、1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.16、【解析】
求導(dǎo),x=0代入求k,點(diǎn)斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點(diǎn)睛】本題考查切線方程,求導(dǎo)法則及運(yùn)算,考查直線方程,考查計(jì)算能力,是基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見詳解;(2)證明見詳解【解析】
(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對(duì)于任意都成立,則成等比數(shù)列,設(shè)公比為,驗(yàn)證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”.(2)證明:既是“數(shù)列”又是“數(shù)列”,可得,()(),()可得:對(duì)于任意都成立,即成等比數(shù)列,即成等比數(shù)列,成等比數(shù)列,成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時(shí),由()可得:時(shí),由()可得:,可得,同理可證成等比數(shù)列,數(shù)列是等比數(shù)列【點(diǎn)睛】本題是一道數(shù)列的新定義題目,考查了等比數(shù)列的性質(zhì)、通項(xiàng)公式等基本知識(shí),考查代數(shù)推理、轉(zhuǎn)化與化歸以及綜合運(yùn)用數(shù)學(xué)知識(shí)探究與解決問(wèn)題的能力,屬于難題.18、(1)見解析;(2)【解析】
(1)取的中點(diǎn),連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標(biāo)系,再求得平面的法向量與平面的法向量進(jìn)而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點(diǎn),連接.又為的中點(diǎn),則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因?yàn)?為的中點(diǎn),所以.因?yàn)?所以.因?yàn)槠矫?所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標(biāo)系:因?yàn)?所以點(diǎn).則.設(shè)平面的法向量為,由,得,令,得平面的一個(gè)法向量為;顯然平面的一個(gè)法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【點(diǎn)睛】本題主要考查了線面垂直的證明以及建立空間直角坐標(biāo)系求解二面角的問(wèn)題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.19、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對(duì)任意恒成立,即時(shí),,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過(guò)代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),,曲線在點(diǎn)處的切線方程為,,解得.(2)記,整理得,由題知,對(duì)任意恒成立,對(duì)任意恒成立,即時(shí),,,解得,當(dāng)時(shí),對(duì)任意,,,,,即在單調(diào)遞增,此時(shí),實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個(gè)不同的實(shí)根,以下給出證明:記,,則關(guān)于的方程有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)有三個(gè)零點(diǎn),,當(dāng)時(shí),,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個(gè)零點(diǎn);當(dāng)時(shí),記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個(gè)零點(diǎn),則至多有兩個(gè)單調(diào)區(qū)間,至多有兩個(gè)零點(diǎn).因此,不可能有三個(gè)零點(diǎn).關(guān)于的方程不可能有三個(gè)不同的實(shí)根.【點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.20、(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】
(1)利用相互獨(dú)立事件的概率乘法公式即可求解.(2)利用相互獨(dú)立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差數(shù)列的定義即可證出.(4)利用等差數(shù)列的通項(xiàng)公式可得,從而可得,再由,利用式子的特征可得越來(lái)越小,進(jìn)而得出結(jié)論.【詳解】(1)即與是父親和母親的性狀,每個(gè)因子被選擇的概率都是,故出現(xiàn)的概率是,或出現(xiàn)的概率是,出現(xiàn)的概率是所以:,(或),的概率分別是,,(2)(3)由(2)知于是∴是等差數(shù)列,公差為1(4)其中,(由(2)的結(jié)論得)所以于是,很明顯,越大,越小,所以這種實(shí)驗(yàn)長(zhǎng)期進(jìn)行下去,越來(lái)越小,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度辦公設(shè)備智能化改造及租賃合同3篇
- 2024醫(yī)院醫(yī)務(wù)人員崗位技能培訓(xùn)與考核聘用合同范本3篇
- 城市綜合體砌體抹灰施工合同
- 市政工程公司員工聘用合同
- 酒吧衛(wèi)生管理規(guī)定
- 石油化工招投標(biāo)法人授權(quán)委托書
- 運(yùn)動(dòng)賽事授權(quán)贊助協(xié)議
- 醫(yī)療器械審批權(quán)限管理辦法
- 水產(chǎn)品加工水井租賃協(xié)議
- 藥品集中采購(gòu)招投標(biāo)策略
- 智能 檢測(cè)與監(jiān)測(cè) 技術(shù)-智能建造技術(shù)專01課件講解
- 大學(xué)生創(chuàng)業(yè)參考計(jì)劃書范文5篇
- 2024年度醫(yī)院醫(yī)療設(shè)備融資租賃合同4篇
- 行政規(guī)范性文件課件
- 交通事故應(yīng)急處理考核試卷
- 工貿(mào)企業(yè)安全生產(chǎn)費(fèi)用提取和使用管理制度(4篇)
- 中建硅墨烯保溫板外墻保溫施工方案
- 化學(xué)概論知到智慧樹章節(jié)測(cè)試課后答案2024年秋東北師范大學(xué)
- GB/T 750-2024水泥壓蒸安定性試驗(yàn)方法
- 2025屆廣東省廣州市物理高二第一學(xué)期期末檢測(cè)試題含解析
- 郵政行業(yè)事故隱患監(jiān)測(cè)與獎(jiǎng)勵(lì)機(jī)制
評(píng)論
0/150
提交評(píng)論