廣東省佛山一中2025屆高三第二次診斷性檢測數學試卷含解析_第1頁
廣東省佛山一中2025屆高三第二次診斷性檢測數學試卷含解析_第2頁
廣東省佛山一中2025屆高三第二次診斷性檢測數學試卷含解析_第3頁
廣東省佛山一中2025屆高三第二次診斷性檢測數學試卷含解析_第4頁
廣東省佛山一中2025屆高三第二次診斷性檢測數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省佛山一中2025屆高三第二次診斷性檢測數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.2.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.3.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有4.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.5.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加6.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.7.設集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個8.已知集合,,則的真子集個數為()A.1個 B.2個 C.3個 D.4個9.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.410.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.811.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值12.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示的流程圖中,輸出的值為______.14.電影《厲害了,我的國》于2018年3月正式登陸全國院線,網友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預測,第4個盒子里放的電影票為_________15.已知,滿足約束條件則的最小值為__________.16.某中學數學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數為81,乙組5名同學成績的中位數為73,則x-y的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.18.(12分)已知函數,其中.(1)①求函數的單調區(qū)間;②若滿足,且.求證:.(2)函數.若對任意,都有,求的最大值.19.(12分)對于非負整數集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數.(1)給出所有的元素均小于的好集合.(給出結論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數倍.20.(12分)在中,、、的對應邊分別為、、,已知,,.(1)求;(2)設為中點,求的長.21.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現(xiàn)從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統(tǒng)計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;(Ⅲ)為便于聯(lián)絡,現(xiàn)將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯(lián)絡員,要求每組的聯(lián)絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)22.(10分)已知函數,,若存在實數使成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.2、C【解析】

首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.3、B【解析】

根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.4、B【解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.5、C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.6、D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.7、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.8、C【解析】

求出的元素,再確定其真子集個數.【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數問題,解題時可先確定交集中集合的元素個數,解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.9、C【解析】

由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.10、A【解析】

由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數量積的運算率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.11、D【解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.12、A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

根據流程圖依次運行直到,結束循環(huán),輸出n,得出結果.【詳解】由題:,,,結束循環(huán),輸出.故答案為:4【點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環(huán)結構和判斷框語句.14、A或D【解析】

分別假設每一個人一半是對的,然后分別進行驗證即可.【詳解】解:假設甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是.故第4個盒子里面放的電影票為或.故答案為:或【點睛】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結能力,屬于中檔題.15、【解析】

畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.16、【解析】

根據莖葉圖中的數據,結合平均數與中位數的概念,求出x、y的值.【詳解】根據莖葉圖中的數據,得:甲班5名同學成績的平均數為,解得;又乙班5名同學的中位數為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據莖葉圖計算中位數、平均數,考查數據分析能力,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)①單調遞增區(qū)間,,單調遞減區(qū)間;②詳見解析;(2).【解析】

(1)①求導可得,再分別求解與的解集,結合定義域分析函數的單調區(qū)間即可.②根據(1)中的結論,求出的表達式,再分與兩種情況,結合函數的單調性分析的范圍即可.(2)求導分析的單調性,再結合單調性,設去絕對值化簡可得,再構造函數,,根據函數的單調性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數的單調遞增區(qū)間,,單調遞減區(qū)間;,或,若,因為,故,,由知在上單調遞增,,若由可得x1,因為,所以,由在上單調遞增,綜上.時,,在上單調遞減,不妨設由(1)在上單調遞減,由,可得,所以,令,,可得單調遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點睛】本題主要考查了分類討論分析函數單調性的問題,同時也考查了利用導數求解函數不等式以及構造函數分析函數的最值解決恒成立的問題.需要根據題意結合定義域與單調性分析函數的取值范圍與最值等.屬于難題.19、(1),,,.(2);證明見解析.(3)證明見解析.【解析】

(1)根據好集合的定義列舉即可得到結果;(2)設,其中,由知;由可知或,分別討論兩種情況可的結果;(3)記,則,設,由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設,其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數.(3)記,則,首先,,設,其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論