天津市武清區(qū)高中學2025屆高三第二次診斷性檢測數(shù)學試卷含解析_第1頁
天津市武清區(qū)高中學2025屆高三第二次診斷性檢測數(shù)學試卷含解析_第2頁
天津市武清區(qū)高中學2025屆高三第二次診斷性檢測數(shù)學試卷含解析_第3頁
天津市武清區(qū)高中學2025屆高三第二次診斷性檢測數(shù)學試卷含解析_第4頁
天津市武清區(qū)高中學2025屆高三第二次診斷性檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

天津市武清區(qū)高中學2025屆高三第二次診斷性檢測數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.2.設,,,則的大小關系是()A. B. C. D.3.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.4.的展開式中的系數(shù)為()A. B. C. D.5.中,點在邊上,平分,若,,,,則()A. B. C. D.6.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.47.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或48.()A. B. C. D.9.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.10.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.11.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.12.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件,則目標函數(shù)的最小值為_.14.已知,,,,則______.15.的三個內(nèi)角A,B,C所對應的邊分別為a,b,c,已知,則________.16.六位同學坐在一排,現(xiàn)讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.18.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設,求的取值范圍.19.(12分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費用(百萬元)2361021131518產(chǎn)品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關關系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.20.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.21.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數(shù)列,求的值22.(10分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設函數(shù)的極值點為,當變化時,點構成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據(jù)中線作出平行四邊形是關鍵,是中檔題.2、A【解析】

選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、??碱}型.3、C【解析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.4、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數(shù)、整數(shù)冪的運算等有關方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.5、B【解析】

由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.6、B【解析】

因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!7、C【解析】

對a進行分類討論,結合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側重考查數(shù)學運算和數(shù)學抽象的核心素養(yǎng).8、A【解析】

分子分母同乘,即根據(jù)復數(shù)的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復數(shù)的除法運算,屬于基礎題.9、C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.10、C【解析】

根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎題.11、A【解析】

由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.12、D【解析】

由題意可得,根據(jù),即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結合的思想方法,屬于基礎題.14、【解析】

由已知利用同角三角函數(shù)的基本關系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點睛】本題主要考查了同角三角函數(shù)的基本關系、兩角差的正弦公式,需熟記公式,屬于基礎題.15、【解析】

利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.16、135【解析】

根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系.如圖所示:則,,,.∴,,.設為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的正弦值為.【點睛】本題第一問考查線線垂直,先證線面垂直時解題關鍵,第二問考查二面角,建立空間直角坐標系是解題關鍵,屬于中檔題.18、(1)(2)【解析】

(1)先利用同角的三角函數(shù)關系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數(shù)值求值,考查正弦定理的應用.19、(Ⅰ)(Ⅱ)7839.3元【解析】

(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數(shù)μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計算獎金總數(shù)是多少.【詳解】(Ⅰ)因為,,因為,所以,所以;(Ⅱ)因為,所以,故即,日銷量的概率為,日銷量的概率為,日銷量的概率為,所以獎金總數(shù)大約為:(元).【點睛】本題考查利用最小二乘法求回歸直線方程,還考查了利用正態(tài)分布計算概率,進而估計總體情況,屬于中檔題.20、(1)(2)【解析】

(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當且僅當時取等,.所以的面積的最大值為.【點睛】本題考查了正余弦定理在解三角形中的應用,考查了三角形面積的最值問題,難度較易.21、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解析】

(1)由極坐標與直角坐標的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方程中,利用韋達定理得,,可得到,根據(jù)因為,,成等比數(shù)列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,即直線的普通方程為;(2)把的參數(shù)方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數(shù)列,所以,即,則,解得解得或(舍),所以實數(shù).【點睛】本題主要考查了極坐標方程與直角坐標方程,以及參數(shù)方程與普通方程的互化,以及直線參數(shù)方程的應用,其中解答中熟記互化公式,合理應用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.22、(1);(2)證明見解析【解析】

(1)由恒成立,可得恒成立,進而構造函數(shù),求導可判斷出的單調(diào)性,進而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進而可得,即曲線的方程為,進而只需證明對任意,方程有唯一解,然后構造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當時,恒成立,在上單調(diào)遞增.,,,存在滿足時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論