2025屆遼寧省葫蘆島市協(xié)作校高考數(shù)學(xué)三模試卷含解析_第1頁(yè)
2025屆遼寧省葫蘆島市協(xié)作校高考數(shù)學(xué)三模試卷含解析_第2頁(yè)
2025屆遼寧省葫蘆島市協(xié)作校高考數(shù)學(xué)三模試卷含解析_第3頁(yè)
2025屆遼寧省葫蘆島市協(xié)作校高考數(shù)學(xué)三模試卷含解析_第4頁(yè)
2025屆遼寧省葫蘆島市協(xié)作校高考數(shù)學(xué)三模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆遼寧省葫蘆島市協(xié)作校高考數(shù)學(xué)三模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線(xiàn)和點(diǎn),直線(xiàn)與拋物線(xiàn)交于不同兩點(diǎn),,直線(xiàn)與拋物線(xiàn)交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線(xiàn)準(zhǔn)線(xiàn)相離;②直線(xiàn)與直線(xiàn)的斜率乘積為;③設(shè)過(guò)點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③2.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]3.中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線(xiàn)的兩條漸近線(xiàn)與圓都相切,則雙曲線(xiàn)的離心率是()A.2或 B.2或 C.或 D.或4.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.5.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位6.若的展開(kāi)式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.17.雙曲線(xiàn)x26-y23=1的漸近線(xiàn)與圓(x-3)2+y2=A.3 B.2C.3 D.68.設(shè)是雙曲線(xiàn)的左、右焦點(diǎn),若雙曲線(xiàn)右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線(xiàn)的離心率為()A. B. C. D.9.如圖,在平行四邊形中,對(duì)角線(xiàn)與交于點(diǎn),且,則()A. B.C. D.10.年部分省市將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B.C. D.11.已知,,若,則向量在向量方向的投影為()A. B. C. D.12.某單位去年的開(kāi)支分布的折線(xiàn)圖如圖1所示,在這一年中的水、電、交通開(kāi)支(單位:萬(wàn)元)如圖2所示,則該單位去年的水費(fèi)開(kāi)支占總開(kāi)支的百分比為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在長(zhǎng)方體中,,,,為的中點(diǎn),則點(diǎn)到平面的距離是______.14.函數(shù)的值域?yàn)開(kāi)____.15.已知函數(shù)在點(diǎn)處的切線(xiàn)經(jīng)過(guò)原點(diǎn),函數(shù)的最小值為,則________.16.一個(gè)算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.18.(12分)選修4-2:矩陣與變換(本小題滿(mǎn)分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.19.(12分)如圖,四邊形是邊長(zhǎng)為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.20.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.21.(12分)[選修45:不等式選講]已知都是正實(shí)數(shù),且,求證:.22.(10分)在中,內(nèi)角的邊長(zhǎng)分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

對(duì)于①,利用拋物線(xiàn)的定義,利用可判斷;對(duì)于②,設(shè)直線(xiàn)的方程為,與拋物線(xiàn)聯(lián)立,用坐標(biāo)表示直線(xiàn)與直線(xiàn)的斜率乘積,即可判斷;對(duì)于③,將代入拋物線(xiàn)的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線(xiàn)段的中垂線(xiàn)與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線(xiàn)的焦點(diǎn),以線(xiàn)段為直徑的圓為,則圓心為線(xiàn)段的中點(diǎn).設(shè),到準(zhǔn)線(xiàn)的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線(xiàn)的距離為,顯然,,三點(diǎn)不共線(xiàn),則.所以①正確.由題意可設(shè)直線(xiàn)的方程為,代入拋物線(xiàn)的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線(xiàn)與直線(xiàn)的斜率乘積為.所以②正確.將代入拋物線(xiàn)的方程可得,,從而,.根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知,,兩點(diǎn)關(guān)于軸對(duì)稱(chēng),所以過(guò)點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線(xiàn)段的中垂線(xiàn)與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線(xiàn)的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.2、B【解析】

先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)題意,由圓的切線(xiàn)求得雙曲線(xiàn)的漸近線(xiàn)的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線(xiàn)的離心率.【詳解】設(shè)雙曲線(xiàn)C的漸近線(xiàn)方程為y=kx,是圓的切線(xiàn)得:,得雙曲線(xiàn)的一條漸近線(xiàn)的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:

①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線(xiàn)的離心率2或.

故選:A.【點(diǎn)睛】本小題主要考查直線(xiàn)與圓的位置關(guān)系、雙曲線(xiàn)的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線(xiàn)求得直線(xiàn)的方程,再由雙曲線(xiàn)中漸近線(xiàn)的方程的關(guān)系建立等式,從而解出雙曲線(xiàn)的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.4、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.5、C【解析】

根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.6、B【解析】

由,進(jìn)而分別求出展開(kāi)式中的系數(shù)及展開(kāi)式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開(kāi)式中的系數(shù)為,展開(kāi)式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.7、A【解析】

由圓心到漸近線(xiàn)的距離等于半徑列方程求解即可.【詳解】雙曲線(xiàn)的漸近線(xiàn)方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線(xiàn)的距離等于圓的半徑r,即r=±答案:A【點(diǎn)睛】本題考查了雙曲線(xiàn)的漸近線(xiàn)方程及直線(xiàn)與圓的位置關(guān)系,屬于基礎(chǔ)題.8、D【解析】

利用向量運(yùn)算可得,即,由為的中位線(xiàn),得到,所以,再根據(jù)雙曲線(xiàn)定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線(xiàn),所以,所以;由雙曲線(xiàn)定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線(xiàn)的相關(guān)性質(zhì),難度一般.9、C【解析】

畫(huà)出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫(huà)出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問(wèn)題(1)只要兩個(gè)向量不共線(xiàn),就可以作為平面的一組基底,基底可以有無(wú)窮多組,在解決具體問(wèn)題時(shí),合理選擇基底會(huì)給解題帶來(lái)方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.10、B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.11、B【解析】

由,,,再由向量在向量方向的投影為化簡(jiǎn)運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題12、A【解析】

由折線(xiàn)圖找出水、電、交通開(kāi)支占總開(kāi)支的比例,再計(jì)算出水費(fèi)開(kāi)支占水、電、交通開(kāi)支的比例,相乘即可求出水費(fèi)開(kāi)支占總開(kāi)支的百分比.【詳解】水費(fèi)開(kāi)支占總開(kāi)支的百分比為.故選:A【點(diǎn)睛】本題考查折線(xiàn)圖與柱形圖,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用等體積法求解點(diǎn)到平面的距離【詳解】由題在長(zhǎng)方體中,,,所以,所以,設(shè)點(diǎn)到平面的距離為,解得故答案為:【點(diǎn)睛】此題考查求點(diǎn)到平面的距離,通過(guò)在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點(diǎn).14、【解析】

利用配方法化簡(jiǎn)式子,可得,然后根據(jù)觀(guān)察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問(wèn)題,屬基礎(chǔ)題。15、0【解析】

求出,求出切線(xiàn)點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線(xiàn)的方程:,又過(guò)原點(diǎn),所以,,,.當(dāng)時(shí),;當(dāng)時(shí),.故函數(shù)的最小值,所以.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..16、【解析】

由程序中的變量、各語(yǔ)句的作用,結(jié)合流程圖所給的順序,模擬程序的運(yùn)行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿(mǎn)足條件,執(zhí)行循環(huán)體,,此時(shí),滿(mǎn)足條件,退出循環(huán),輸出的值為.故答案為:【點(diǎn)睛】本題主要考查了程序和算法,依次寫(xiě)出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識(shí)的考查.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【解析】

(1)求出,記,問(wèn)題轉(zhuǎn)化為方程有兩個(gè)不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點(diǎn),且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時(shí),,單調(diào)遞減,,時(shí),,單調(diào)遞增,,由題意,方程有兩個(gè)不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,記,則,因?yàn)椋?,所以時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,因?yàn)椋?,所?即函數(shù)的極大值不小于1.【點(diǎn)睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.18、解:設(shè)特征向量為α=對(duì)應(yīng)的特征值為λ,則=λ,即因?yàn)閗≠0,所以a=2.5分因?yàn)?,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點(diǎn):特征向量,逆矩陣點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,考查逆矩陣.19、(1)證明見(jiàn)解析(2)【解析】

(1)由已知線(xiàn)面垂直得,結(jié)合菱形對(duì)角線(xiàn)垂直,可證得線(xiàn)面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線(xiàn)面垂直知與平面所成角為,這樣可計(jì)算出的長(zhǎng),寫(xiě)出各點(diǎn)坐標(biāo),求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因?yàn)槠矫?,平面,所?因?yàn)樗倪呅问橇庑?,所?又因?yàn)?,平面,平面,所以平?解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因?yàn)榕c平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個(gè)法向量,則令,則.因?yàn)槠矫妫詾槠矫娴囊粋€(gè)法向量,且所以,.所以二面角的正弦值為.【點(diǎn)睛】本題考查線(xiàn)面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問(wèn)題轉(zhuǎn)化為計(jì)算.20、(1)B(2)【解析】

(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡(jiǎn)可求cosB,進(jìn)而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因?yàn)閎(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因?yàn)?,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因?yàn)閍2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),即ac的最大值4,所以△ABC面積S即面積的最大值.【點(diǎn)睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.21、見(jiàn)解析【解析】試題分析:把不等式的左邊寫(xiě)成形式,利用柯

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論