版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省鄂州市部分高中聯考協作體2025屆高考數學三模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知函數的一條切線為,則的最小值為()A. B. C. D.3.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心4.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立5.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.6.已知函數,當時,的取值范圍為,則實數m的取值范圍是()A. B. C. D.7.已知函數是奇函數,且,若對,恒成立,則的取值范圍是()A. B. C. D.8.若復數滿足,則()A. B. C. D.9.若函數在時取得最小值,則()A. B. C. D.10.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.11.等比數列中,,則與的等比中項是()A.±4 B.4 C. D.12.如圖所示的“數字塔”有以下規(guī)律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個算法的偽代碼,運行后輸出的值為___________.14.在等差數列()中,若,,則的值是______.15.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.16.展開式的第5項的系數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.18.(12分)已知函數.(1)若在上為單調函數,求實數a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.19.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.20.(12分)為貫徹十九大報告中“要提供更多優(yōu)質生態(tài)產品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現分別從、、三塊試驗田中各隨機抽取株植物測量高度,數據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數據的平均數記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數據與表格中的所有數據構成的新樣本的平均數記為,試比較和的大?。ńY論不要求證明)21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數存在,求的值;若不存在,說明理由.設正數等比數列的前項和為,是等差數列,__________,,,,是否存在正整數,使得成立?22.(10分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.2、A【解析】
求導得到,根據切線方程得到,故,設,求導得到函數在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數的切線問題,利用導數求最值,意在考查學生的計算能力和綜合應用能力.3、B【解析】
解出,計算并化簡可得出結論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.4、A【解析】
作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題.5、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數,利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數學運算的能力,屬于基礎題.6、C【解析】
求導分析函數在時的單調性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結果.【詳解】當時,,令,則;,則,∴函數在單調遞增,在單調遞減.∴函數在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數分析函數值域的方法,考查了分段函數的性質,屬于難題.7、A【解析】
先根據函數奇偶性求得,利用導數判斷函數單調性,利用函數單調性求解不等式即可.【詳解】因為函數是奇函數,所以函數是偶函數.,即,又,所以,.函數的定義域為,所以,則函數在上為單調遞增函數.又在上,,所以為偶函數,且在上單調遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數單調性求解不等式,根據方程組法求函數解析式,利用導數判斷函數單調性,屬壓軸題.8、C【解析】
化簡得到,,再計算復數模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數的化簡,共軛復數,復數模,意在考查學生的計算能力.9、D【解析】
利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.10、D【解析】
根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.11、A【解析】
利用等比數列的性質可得,即可得出.【詳解】設與的等比中項是.
由等比數列的性質可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.12、A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發(fā)現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】根據題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.14、-15【解析】
是等差數列,則有,可得的值,再由可得,計算即得.【詳解】數列是等差數列,,又,,,故.故答案為:【點睛】本題考查等差數列的性質,也可以由已知條件求出和公差,再計算.15、【解析】
連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.16、70【解析】
根據二項式定理的通項公式,可得結果.【詳解】由題可知:第5項為故第5項的的系數為故答案為:70.【點睛】本題考查的是二項式定理,屬基礎題。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.18、(1);(2)【解析】
(1)求導.根據單調,轉化為對恒成立求解(2)由(1)知,是的兩個根,不妨設,令.根據,確定,將轉化為.令,用導數法研究其單調性求最值.【詳解】(1)的定義域為,.因為單調,所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設,則.因為,所以t為關于a的減函數,所以..令,則.因為當時,在上為減函數.所以當時,.從而,所以在上為減函數.所以當時,.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.19、(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設,由圓方程與雙曲線方程聯立,消去后整理,可得,,由先求出,回代后求得坐標,計算;(3)由已知得,設,由圓方程與雙曲線方程聯立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設,由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設由得:,,由得,解得,,,所以,,,當且僅當三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學生的運算求解能力要求較高,解題時都是直接求出交點坐標.難度較大,屬于困難題.20、(1);(2);(3).【解析】
設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結果;(2)設事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據題意直接判斷和的大小即可.【詳解】設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設事件為“甲的高度大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 長沙商貿旅游職業(yè)技術學院《機械制圖與實驗》2023-2024學年第一學期期末試卷
- 配電網數據采集與分析
- 述職報告:技術領先之道模板
- 職業(yè)導論-2020年房地產經紀人《職業(yè)導論》真題匯編
- 名畫欣賞與創(chuàng)作模板
- 公司年年會主持稿
- 二零二五年電子商務平臺入駐合作協議范本3篇
- 二零二五版北京車牌租賃市場推廣合作合同規(guī)范范本9篇
- 二零二五版基站建設場地使用權及通信網絡優(yōu)化合同2篇
- 吉林油田十二中2024-2025學年七年級上學期期末語文試卷(含答案)
- 分期還款協議書
- 小區(qū)住戶手冊范本
- ??低?視頻監(jiān)控原理培訓教材課件
- 《鄭伯克段于鄢》-完整版課件
- 土壤肥料全套課件
- 畢業(yè)生延期畢業(yè)申請表
- 學校6S管理制度
- 肽的健康作用及應用課件
- T.C--M-ONE效果器使用手冊
- 8小時等效A聲級計算工具
- 人教版七年級下冊數學計算題300道
評論
0/150
提交評論