山西重點(diǎn)中學(xué)2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
山西重點(diǎn)中學(xué)2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
山西重點(diǎn)中學(xué)2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
山西重點(diǎn)中學(xué)2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
山西重點(diǎn)中學(xué)2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西重點(diǎn)中學(xué)2025屆高三第二次診斷性檢測(cè)數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“幻方”最早記載于我國(guó)公元前500年的春秋時(shí)期《大戴禮》中.“階幻方”是由前個(gè)正整數(shù)組成的—個(gè)階方陣,其各行各列及兩條對(duì)角線所含的個(gè)數(shù)之和(簡(jiǎn)稱(chēng)幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.452.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.3.函數(shù)的定義域?yàn)椋?,則()A. B. C. D.4.()A. B. C. D.5.設(shè),是雙曲線的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.6.已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說(shuō)法錯(cuò)誤的是()A.該超市2018年的12個(gè)月中的7月份的收益最高B.該超市2018年的12個(gè)月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬(wàn)元7.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.8.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.29.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.10.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.11.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.12.已知集合,,則集合子集的個(gè)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.14.在中,角所對(duì)的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為_(kāi)_______.15.若,則_________.16.已知集合,,則_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.18.(12分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.19.(12分)如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長(zhǎng)度;(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問(wèn)點(diǎn)P在何處時(shí),α+β最???20.(12分)如圖在直角中,為直角,,,分別為,的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,連接,,為的中點(diǎn).(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.21.(12分)已知橢圓:()的左、右焦點(diǎn)分別為和,右頂點(diǎn)為,且,短軸長(zhǎng)為.(1)求橢圓的方程;(2)若過(guò)點(diǎn)作垂直軸的直線,點(diǎn)為直線上縱坐標(biāo)不為零的任意一點(diǎn),過(guò)作的垂線交橢圓于點(diǎn)和,當(dāng)時(shí),求此時(shí)四邊形的面積.22.(10分)記為數(shù)列的前項(xiàng)和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

計(jì)算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點(diǎn)睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.2、C【解析】

建立坐標(biāo)系,寫(xiě)出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類(lèi)綜合問(wèn)題.通過(guò)向量的運(yùn)算,將問(wèn)題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類(lèi)問(wèn)題的一般方法.3、A【解析】

根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.4、A【解析】

分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.5、B【解析】

設(shè)過(guò)點(diǎn)作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線,其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.6、D【解析】

用收入減去支出,求得每月收益,然后對(duì)選項(xiàng)逐一分析,由此判斷出說(shuō)法錯(cuò)誤的選項(xiàng).【詳解】用收入減去支出,求得每月收益(萬(wàn)元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項(xiàng)說(shuō)法正確;月收益最低,B選項(xiàng)說(shuō)法正確;月總收益萬(wàn)元,月總收益萬(wàn)元,所以前個(gè)月收益低于后六個(gè)月收益,C選項(xiàng)說(shuō)法正確,后個(gè)月收益比前個(gè)月收益增長(zhǎng)萬(wàn)元,所以D選項(xiàng)說(shuō)法錯(cuò)誤.故選D.【點(diǎn)睛】本小題主要考查圖表分析,考查收益的計(jì)算方法,屬于基礎(chǔ)題.7、C【解析】

由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號(hào),所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.8、D【解析】

由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.9、B【解析】

先判斷命題的真假,進(jìn)而根據(jù)復(fù)合命題真假的真值表,即可得答案.【詳解】,,因?yàn)椋?,所以,所以,即命題p為真命題;畫(huà)出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點(diǎn)睛】本題考查真假命題的概念,以及真值表的應(yīng)用,解題的關(guān)鍵是判斷出命題的真假,難度較易.10、D【解析】

根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.11、C【解析】

首先求出等差數(shù)列的首先和公差,然后寫(xiě)出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.12、B【解析】

首先求出,再根據(jù)含有個(gè)元素的集合有個(gè)子集,計(jì)算可得.【詳解】解:,,,子集的個(gè)數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個(gè)數(shù)的計(jì)算公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)分段函數(shù)的解析式畫(huà)出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫(huà)出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時(shí)無(wú)交點(diǎn),,得;又,過(guò)定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時(shí),所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時(shí),恒成立.綜上所述,存在唯一的整數(shù)使得,此時(shí)故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問(wèn)題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時(shí)的不等式求的范圍.屬于難題.14、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡(jiǎn)得,因此當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.15、【解析】

因?yàn)椋?因?yàn)椋?,又,所以,所?.16、【解析】

由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點(diǎn)睛】本題考查了交集及其運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點(diǎn)分段討論法把函數(shù)改寫(xiě)成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對(duì)值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,,或,或,或所以不等式的解集為;(Ⅱ)因?yàn)椋郑ó?dāng)時(shí)等號(hào)成立),依題意,,,有,則,解之得,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查由存在性問(wèn)題求參數(shù)的范圍、零點(diǎn)分段討論法解絕對(duì)值不等式、利用絕對(duì)值三角不等式和均值不等式求最值;考查運(yùn)算求解能力、分類(lèi)討論思想、邏輯推理能力;屬于中檔題.18、(1)(2)【解析】

(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把點(diǎn)極坐標(biāo)化為直角坐標(biāo),直線的參數(shù)方程是過(guò)定點(diǎn)的標(biāo)準(zhǔn)形式,因此直接把參數(shù)方程代入曲線的方程,利用參數(shù)的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標(biāo)方程為,即(2)點(diǎn)的直角坐標(biāo)為,易知.設(shè)對(duì)應(yīng)參數(shù)分別為將與聯(lián)立得【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查直線參數(shù)方程,解題時(shí)可利用利用參數(shù)方程的幾何意義求直線上兩點(diǎn)間距離問(wèn)題.19、(1);(2)當(dāng)BP為cm時(shí),α+β取得最小值.【解析】

(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,根據(jù)得到,解得答案.(2)設(shè)BP=t,則,故,設(shè),求導(dǎo)得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,則,化簡(jiǎn)得,解之得,或(舍),(2)設(shè)BP=t,則,,設(shè),,令f'(t)=0,因?yàn)?,得,?dāng)時(shí),f'(t)<0,f(t)是減函數(shù);當(dāng)時(shí),f'(t)>0,f(t)是增函數(shù),所以,當(dāng)時(shí),f(t)取得最小值,即tan(α+β)取得最小值,因?yàn)楹愠闪?,所以f(t)<0,所以tan(α+β)<0,,因?yàn)閥=tanx在上是增函數(shù),所以當(dāng)時(shí),α+β取得最小值.【點(diǎn)睛】本題考查了三角恒等變換,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn),連結(jié)、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點(diǎn),、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點(diǎn),連結(jié)、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點(diǎn),∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點(diǎn),、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,設(shè),則,,,,∴,,,設(shè)面的法向量,則,取,得,同理,得平面的法向量,設(shè)二面角的平面角為,則,∴二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直及線面垂直性質(zhì)定理、線面垂直判定與性質(zhì)定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.21、(1)(2)【解析】

(1)依題意可得,解方程組即可求出橢圓的方程;(2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),,列出韋達(dá)定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點(diǎn)到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設(shè),∴.∵,∴,∴設(shè)直線的方程為,∴,∴,顯然恒成立.設(shè),,則,,∴.∴,∴,∴解得,解得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論