版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河北省邢臺市第八中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),以下結(jié)論正確的個數(shù)為()①當(dāng)時,函數(shù)的圖象的對稱中心為;②當(dāng)時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時,在上的最大值為1.A.1 B.2 C.3 D.42.已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標(biāo)原點),則雙曲線的漸近線方程為()A. B. C. D.3.已知函數(shù)的定義域為,且,當(dāng)時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.84.若不等式在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.5.在中,,則=()A. B.C. D.6.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學(xué)生500名,估計理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.1007.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)8.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π9.設(shè),,是非零向量.若,則()A. B. C. D.10.我國南北朝時的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤11.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.12.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某市一學(xué)校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點.當(dāng)?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時,面積為最小,政府投資最低?14.已知數(shù)列滿足對任意,,則數(shù)列的通項公式__________.15.對于任意的正數(shù),不等式恒成立,則的最大值為_____.16.在△ABC中,a=3,,B=2A,則cosA=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準(zhǔn)線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當(dāng)?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:18.(12分)設(shè)點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),點.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.20.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.21.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時,用列舉法表示集合;(Ⅱ)當(dāng)時,,且集合滿足下列條件:①對任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.22.(10分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當(dāng)時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因為,,所以最大值為64,結(jié)論錯誤.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.2、B【解析】
先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.3、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.4、C【解析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點,得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),結(jié)合圖象,可求出實數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當(dāng)時,至多一個整數(shù)根;當(dāng)時,在內(nèi)的解集中僅有三個整數(shù),只需,,所以.故選:C.【點睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時考查數(shù)形結(jié)合思想和解題能力.5、B【解析】
在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.6、D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.7、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點一側(cè)的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.8、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.9、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標(biāo)運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運算,此法對解含垂直關(guān)系的問題往往有很好效果.10、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C11、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.12、D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、(1);(2).【解析】
(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時,取得最大值,取最小值.答:當(dāng)時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應(yīng)用,應(yīng)優(yōu)先結(jié)合實際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.14、【解析】
利用累加法求得數(shù)列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數(shù)列的通項公式,屬于基礎(chǔ)題.15、【解析】
根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當(dāng)且僅當(dāng)即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進行等價變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.16、【解析】
由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)由得令可得,進而得到,同理,利用數(shù)量積坐標(biāo)計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,,.可得點的坐標(biāo)為.當(dāng)時,可求得點的坐標(biāo)為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數(shù)單調(diào)遞增,可得此時.②當(dāng)時,由(1)知令由,故當(dāng)時,,此時函數(shù)單調(diào)遞增:當(dāng)時,,此時函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時,可求得.由①②知,若點在軸上方,當(dāng)?shù)拿娣e最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運算求解能力,是一道難題.18、(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關(guān)系式,利用點到直線的距離公式即可得到,.當(dāng)時,設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時,四邊形是矩形,即可得出的最大值.【詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個公共點知,,化簡得:.
設(shè),,當(dāng)時,設(shè)直線的傾斜角為,則,,,,∴當(dāng)時,,,.當(dāng)時,四邊形是矩形,.
所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.19、(1),以為圓心,為半徑的圓;(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,直接得到的直角坐標(biāo)方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程中的幾何意義結(jié)合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設(shè)點,所對應(yīng)的參數(shù)分別為,,則,.,解得,則.【點睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化以及根據(jù)直線參數(shù)方程中的幾何
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年峨眉山市人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 城南舊事讀書心得七年級作文800字【7篇】
- 2024年甲肝疫苗項目可行性研究報告
- 北京市房屋租賃合同自行成交版租房
- 老員工辭職申請書15篇
- 石材打磨結(jié)晶面護理合同
- 煤炭個人購銷合同
- 2024年中國砂椎開瓶器市場調(diào)查研究報告
- 2025版空房租賃與綠色建筑節(jié)能評估服務(wù)合同3篇
- 個人裝修合同簡易版本
- 車位租給別人安裝充電樁協(xié)議
- GB/T 44127-2024行政事業(yè)單位公物倉建設(shè)與運行指南
- 2025屆云南省昆明盤龍區(qū)聯(lián)考九年級英語第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 物流運輸管理實務(wù)(第2版)高職物流管理專業(yè)全套教學(xué)課件
- 金融服務(wù)居間合同協(xié)議
- 招標(biāo)代理機構(gòu)選取質(zhì)量保障方案
- jgj94-94建筑樁基技術(shù)規(guī)范
- 歐美電影文化智慧樹知到期末考試答案2024年
- DL T 5745-2016 電力建設(shè)工程工程量清單計價規(guī)范
- 眼科醫(yī)院績效考核方案
- 預(yù)繳物業(yè)費感恩回饋活動方案
評論
0/150
提交評論