天津市武清區(qū)2025屆高考數(shù)學押題試卷含解析_第1頁
天津市武清區(qū)2025屆高考數(shù)學押題試卷含解析_第2頁
天津市武清區(qū)2025屆高考數(shù)學押題試卷含解析_第3頁
天津市武清區(qū)2025屆高考數(shù)學押題試卷含解析_第4頁
天津市武清區(qū)2025屆高考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津市武清區(qū)2025屆高考數(shù)學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.2.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得3.已知,,,則()A. B. C. D.4.已知方程表示的曲線為的圖象,對于函數(shù)有如下結論:①在上單調遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④5.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關于對稱 D.函數(shù)的零點有無窮多個6.為實現(xiàn)國民經(jīng)濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當年貧困戶總數(shù)的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占2019年貧困戶總數(shù)的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍7.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.48.世紀產(chǎn)生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.9.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離10.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.11.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人12.函數(shù)圖像可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.14.已知實數(shù)x,y滿足(2x-y)2+4y15.正方體的棱長為2,是它的內切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當弦的長度最大時,的取值范圍是______.16.已知等差數(shù)列滿足,,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某網(wǎng)絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學期望.18.(12分)已知分別是內角的對邊,滿足(1)求內角的大小(2)已知,設點是外一點,且,求平面四邊形面積的最大值.19.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.20.(12分)已知函數(shù).(1)討論的單調性并指出相應單調區(qū)間;(2)若,設是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.21.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.22.(10分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).2、A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.3、B【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性比較大小,屬基礎題.4、C【解析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的圖象與性質,函數(shù)的零點概念,考查了數(shù)形結合的數(shù)學思想.5、D【解析】

運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達式判斷即可.【詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數(shù)的性質,主要是抽象函數(shù)的性質,運用數(shù)學式子判斷得出結論是關鍵.6、B【解析】

設貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進而可求解.【詳解】設貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統(tǒng)計,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.7、B【解析】

對函數(shù)化簡可得,進而結合三角函數(shù)的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.8、C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.9、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r10、D【解析】

根據(jù)面面關系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.11、D【解析】

根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.12、D【解析】

先判斷函數(shù)的奇偶性可排除選項A,C,當時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關系,考查差角的正切公式,考查學生的計算能力,屬于中檔題.14、2【解析】

直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.15、【解析】

由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設球心為,則當弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數(shù)量積的運算,正方體內切球性質應用,屬于中檔題.16、11【解析】

由等差數(shù)列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數(shù)列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)元;(2)32家;(3)分布列見解析;【解析】

(1)根據(jù)頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數(shù)學期望【點睛】本題考查應用頻率分布直方圖求平均數(shù)和頻數(shù),考查離散型隨機變量的分布列和期望,屬于基礎題.18、(1)(2)【解析】

(1)首先利用誘導公式及兩角和的余弦公式得到,再由同角三角三角的基本關系得到,即可求出角;(2)由(1)知,是正三角形,設,由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設,由余弦定理得:,,,所以當時有最大值【點睛】本題考查同角三角函數(shù)的基本關系,三角恒等變換公式的應用,三角形面積公式的應用,以及正弦函數(shù)的性質,屬于中檔題.19、(1)函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為;(2).【解析】

(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數(shù)及函數(shù)的零點的判定定理,分類討論進行求解【詳解】(1),①當時,,∴函數(shù)在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數(shù)在上零點的情況,因為,所以①當時,在上單調遞增。又,所以(ⅰ)當時,在上無零點;(ⅱ)當時,,又,所以此時在上恰有一個零點;②當時,令,得,由,得;由,得,所以在上單調遞減,在上單調遞增,因為,,所以此時在上恰有一個零點,綜上,【點睛】本題考查利用導數(shù)求函數(shù)單調區(qū)間,考查利用導數(shù)處理零點個數(shù)問題,考查運算能力,考查分類討論思想20、(1)答案見解析(2)【解析】

(1)先對函數(shù)進行求導得,對分成和兩種情況討論,從而得到相應的單調區(qū)間;(2)對函數(shù)求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數(shù),再構造新函數(shù)利用導數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性、最值,考查分類討論思想和數(shù)形結合思想,求解雙元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論