濰坊科技學院《平面設計與制作》2023-2024學年第一學期期末試卷_第1頁
濰坊科技學院《平面設計與制作》2023-2024學年第一學期期末試卷_第2頁
濰坊科技學院《平面設計與制作》2023-2024學年第一學期期末試卷_第3頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁濰坊科技學院《平面設計與制作》

2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的目標識別任務中,假設目標物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復被遮擋部分的信息?()A.多層感知機(MLP)B.卷積神經(jīng)網(wǎng)絡(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(RNN)D.注意力機制(AttentionMechanism)2、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標。假設要跟蹤一只在森林中奔跑的動物,以下關(guān)于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標的模型來預測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標的顯著特征進行跟蹤C.視覺跟蹤算法在目標發(fā)生快速變形或完全遮擋時仍能保持準確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性3、在計算機視覺的圖像分類任務中,假設數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠遠少于其他類別。以下哪種方法可以緩解這種不平衡對分類模型的影響?()A.對少數(shù)類進行過采樣或?qū)Χ鄶?shù)類進行欠采樣B.只使用多數(shù)類的樣本進行訓練C.不考慮類別不平衡,直接訓練模型D.隨機選擇樣本進行訓練4、計算機視覺中的目標計數(shù)任務,例如統(tǒng)計圖像中物體的數(shù)量。假設要計算一張果園圖片中蘋果的數(shù)量,以下關(guān)于目標計數(shù)方法的描述,正確的是:()A.基于傳統(tǒng)的圖像分割和對象識別方法可以準確快速地完成目標計數(shù)B.深度學習中的回歸模型不適合用于目標計數(shù)任務C.目標的大小、形狀和分布對計數(shù)結(jié)果沒有影響D.結(jié)合深度學習的密度估計方法能夠有效地實現(xiàn)目標計數(shù)5、計算機視覺在體育賽事分析中的應用可以提供更多的數(shù)據(jù)和見解。假設要分析一場足球比賽中球員的跑動軌跡和動作。以下關(guān)于計算機視覺在體育賽事中的描述,哪一項是不準確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠?qū)η騿T的動作進行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復查D.可以結(jié)合多攝像頭的信息,獲取更全面和準確的比賽數(shù)據(jù)6、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學習方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(FCN)C.圖像分割在醫(yī)學影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準確地將圖像中的所有物體都分割出來7、在計算機視覺的文本檢測和識別任務中,假設要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進行識別B.深度學習中的卷積神經(jīng)網(wǎng)絡在文本識別中表現(xiàn)出色,能夠準確識別各種字體和風格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應對,沒有任何困難D.可以結(jié)合光學字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本8、在計算機視覺的圖像配準任務中,假設要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準操作C.基于圖像灰度值的配準方法,計算灰度差異D.隨機選擇圖像中的點進行匹配9、計算機視覺中的動作識別旨在識別視頻中的人體動作。假設要對一段監(jiān)控視頻中的人員動作進行分類,以下關(guān)于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復雜的動作變化,準確率高B.深度學習中的循環(huán)神經(jīng)網(wǎng)絡(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經(jīng)網(wǎng)絡能夠同時處理空間和時間維度的信息,適用于動作識別任務D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強的通用性10、在計算機視覺的行人重識別任務中,假設要在多個攝像頭拍攝的畫面中找到同一個行人。以下關(guān)于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進行融合D.利用深度學習模型自動學習特征的融合方式11、在計算機視覺的三維重建任務中,例如從多視角圖像恢復物體的三維形狀,需要解決相機位姿估計、特征匹配等問題。以下哪種方法在相機位姿估計方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點的方法D.基于深度學習的方法12、在計算機視覺中,目標檢測是一項重要的任務。假設要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關(guān)于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用13、在計算機視覺的圖像去模糊任務中,需要恢復由于相機抖動或物體運動導致的模糊圖像。假設一張夜景照片由于長時間曝光而模糊,同時存在噪聲和低光照條件。以下哪種圖像去模糊算法在處理這種情況時效果較好?()A.盲去卷積算法B.基于正則化的去模糊算法C.深度學習的去模糊模型D.頻域去模糊方法14、在計算機視覺的圖像特征提取中,假設要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復雜度高,實時性差B.HOG特征對光照變化適應性強,但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求15、計算機視覺中的視頻壓縮是為了減少視頻數(shù)據(jù)的存儲空間和傳輸帶寬。假設要對一段高清視頻進行壓縮,同時保持較好的視覺質(zhì)量。以下關(guān)于視頻壓縮方法的描述,正確的是:()A.幀內(nèi)壓縮通過去除圖像內(nèi)部的冗余信息實現(xiàn)壓縮,對圖像質(zhì)量影響較小B.幀間壓縮利用相鄰幀之間的相似性進行壓縮,但會引入明顯的失真C.運動估計在幀間壓縮中不重要,對壓縮效率提升作用不大D.視頻壓縮的碼率越低,壓縮效果越好,視覺質(zhì)量也越高二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在海浪監(jiān)測中的應用。2、(本題5分)解釋計算機視覺中的動作識別任務。3、(本題5分)簡述計算機視覺在地質(zhì)勘探中的作用。4、(本題5分)說明計算機視覺中的圖像增強技術(shù)及其分類。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用目標檢測算法,在氣象圖像中檢測暴雨區(qū)域。2、(本題5分)使用目標跟蹤算法,跟蹤運動場上運動員的軌跡。3、(本題5分)開發(fā)一個能夠識別不同種類候鳥的程序。4、(本題5分)使用目標跟蹤算法,跟蹤舞臺上演員的動作。5、(本題5分)對演唱會的視頻進行觀眾情緒分析和熱度評估。四、分析題(本大題共4個小題,共40分)1、(本題10分)分析某藝術(shù)畫廊的網(wǎng)站設計,研究如何通過頁面布局、作品展示和文字介紹展示藝術(shù)家的作品和畫廊的特色。2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論