版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省仲元中學(xué)2025屆高三壓軸卷數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.4.已知是圓心為坐標(biāo)原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉(zhuǎn)到交圓于點,則的最大值為()A.3 B.2 C. D.5.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學(xué)通過下面的隨機模擬方法來估計的值:先用計算機產(chǎn)生個數(shù)對,其中,都是區(qū)間上的均勻隨機數(shù),再統(tǒng)計,能與構(gòu)成銳角三角形三邊長的數(shù)對的個數(shù)﹔最后根據(jù)統(tǒng)計數(shù)來估計的值.若,則的估計值為()A. B. C. D.6.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件7.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i8.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.9.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.10.閱讀下面的程序框圖,運行相應(yīng)的程序,程序運行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.811.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.12.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.14.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.15.已知,,,,則______.16.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標(biāo).18.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.19.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.20.(12分)設(shè),函數(shù).(1)當(dāng)時,求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個極值點時,總有,求實數(shù)的值.21.(12分)已知數(shù)列{an}的各項均為正,Sn為數(shù)列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設(shè)bn,求數(shù)列{bn}的前n項和.22.(10分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)復(fù)數(shù)運算,求得,再求其對應(yīng)點即可判斷.【詳解】,故其對應(yīng)點的坐標(biāo)為.其位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)的運算,以及復(fù)數(shù)對應(yīng)點的坐標(biāo),屬綜合基礎(chǔ)題.2、D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.3、D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關(guān)鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.4、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.5、B【解析】
先利用幾何概型的概率計算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數(shù)模擬法估計概率,考查學(xué)生的基本計算能力,是一個中檔題.6、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因為,所以,因為,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對應(yīng)此類問題的解題步驟,以及三角形形狀對應(yīng)的特征.7、B【解析】
復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.8、A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.9、D【解析】
根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.10、C【解析】
根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運行結(jié)果,屬于基礎(chǔ)題.11、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.12、B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.14、【解析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設(shè)以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.15、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.16、【解析】
根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(2,).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(biāo)(2,).【點睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點問題一般是統(tǒng)一一種坐標(biāo)形式求解后再進行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).18、(1)(2)特征值為或.【解析】
(1)先設(shè)矩陣,根據(jù),按照運算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值.【詳解】解:(1)設(shè)矩陣由題意,因為,所以,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或.【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運算求解能力.19、(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計算能力,屬于中檔題.20、(1)極大值是,無極小值;(2)【解析】
(1)當(dāng)時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當(dāng)時,;當(dāng)時,.當(dāng)變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當(dāng)時,不等式恒成立,即.當(dāng)時,恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時,,故.當(dāng)時,恒成立,即,因此,當(dāng)時,所以.綜上所述,.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學(xué)生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.21、(1)an=2n+1;(2)2.【解析】
(1)根據(jù)題意求出首項,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項公式;(2)利用錯位相減法進行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 最大子段和算法課程設(shè)計
- 小兔飼養(yǎng)課程設(shè)計圖
- 2024年山東省建筑安全員-B證考試題庫附答案
- 社會培訓(xùn)課程設(shè)計
- 電子拔河游戲課程設(shè)計
- 程序開發(fā)培訓(xùn)課程設(shè)計
- 物流公司課程設(shè)計
- 稅務(wù)課課程設(shè)計范文
- 給鴨子洗澡課程設(shè)計
- 最長公共子串課程設(shè)計
- 康復(fù)科出院指導(dǎo)及健康宣教
- 可多華產(chǎn)品知識(講課)
- 2024全新貝殼二手房交易合同下載(附件版)
- 交通安全設(shè)施工程施工風(fēng)險辨識清單
- 小學(xué)智慧農(nóng)場工作總結(jié)
- 市紀(jì)委跟班學(xué)習(xí)工作總結(jié)
- 妊娠合并高脂血癥的護理查房
- 初中英語閱讀-篇章結(jié)構(gòu)強化練習(xí)(附答案)
- 2022年1月上海春季高考英語真題試卷(附聽力音頻)含詳解與聽力文本
- 廣西壯族自治區(qū)桂林市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(無答案)
- 教學(xué)反思萬能簡短11篇
評論
0/150
提交評論