版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
AgenticAI
–thenewfrontierin
GenAI
Anexecutiveplaybook
HarnessingAIisn’tjustabout
technology—it’saboutunleashingunprecedentedpotential.
Inanerawherespeed,e?ciency,andcustomercentricitydictatemarketleadership,organisationsneedto
harnesseverytoolattheirdisposal.Overthepastcoupleofyears,arti?cialintelligence(AI)hasexplodedontotheworldstage,withcompaniesandindividualsacrossthegloberapidlyadoptingthetechnology.TheGCCisplayingaleadroleinthespace,withbusinessleadersintheregionexploringwaysofintegratingthisrapidly
developingtechnologyintotheiroperations.
GenerativeAI(GenAI)isbeingrecognisedasagame-changerforinnovationintheregion,empoweringenterprisesbyautomatingroutinetasks,enhancingcustomerexperiencesandassistingincritical
decision-makingprocesses.Insightsfromour27thAnnualCEOSurvey:MiddleEast?ndingshaveshownthat73%ofCEOsintheMiddleEastbelieveGenAIwillsigni?cantlychangethewaytheircompanycreates,deliversandcapturesvalueoverthenextthreeyears
1
.GenAIispoisedtomakeasigni?canteconomicimpact,with
estimatesindicatingthatitcouldcontributebetween$2.6trillionand$4.4trillionannuallytoglobalGDPacrossvariousindustriesby2030.Inspeci?csectors,suchasenergy,investmentsinGenAIareexpectedtotriple,
from$40billionin2023toover$140billionbytheendofthedecade.Thissurgeininvestmentre?ectsthe
transformativepotentialofGenAI,particularlyinenhancingproductivity,streamliningbusinessprocesses,andreshapingvaluechainsacrossindustries
2
.
Againstthisbackdrop,multimodalGenAIagenticframeworkshasemergedastransformativecatalysts,
enablingbusinessestoaccelerateprocessautomationatanunprecedentedscale.ThistechnologyinvolvesmultipleAIagentsworkingtogether,eachspecialisingindi?erenttasksordatatypes,tosolvecomplex
problemsandautomateprocesses.Bycollaboratingandconstantlylearning,theseagentsenhance
decision-making,optimiseprocesses,anddriveinnovation.ItcombinesrangeofadvancedAItechniquestoprocessdiversedatatypesandautomatecomplextasks.
Thecentralquestionisn’twhethertoadoptthistechnology,buthowswiftlyorganisationscanintegrateittostayaheadofthecompetition.Thisexecutiveplaybookexploreshoworganisationscanleveragethis
technologytoboostoperationale?ciency,enhancecustomerexperience,anddriverevenuegrowth.Itprovidesreal-worldsuccessstoriesspanningindustrysectorsandorganisationalfunctions,strategicinsights,tactical
blueprints,andbestpracticestoguideyourjourneyintothisrevolutionarylandscape.
Keyinsights
●AgenticAI,di?erentiatedbyitsadvancedhuman-likereasoningandinteractioncapabilities,is
transformingthemanufacturing,healthcare,?nance,retail,transportation,andenergysectors,amongothers.
●Organisations’AIstrategiesshouldleveragemultimodalGenAIcapabilitieswhileensuringethicalAI
safeguardstodriveautonomousprocessre-engineeringandenhanceddecision-makingacrossalllinesofbusiness.
●Integratede?ectively,agenticAIcanenhancee?ciency,lowercosts,improvecustomerexperience,and
driverevenuegrowth.
WhatisagenticAI?
AgenticAIgenerallyreferstoAIsystemsthatpossessthecapacitytomakeautonomousdecisionsandtakeactionstoachievespeci?c
goalswithlimitedornodirecthumanintervention
3
.
KeyaspectsofagenticAI
Goal-orientedbehaviour:TheseAIagentsaredesignedtopursuespeci?cobjectives,optimising
theiractionstoachievethedesiredoutcomes.
Autonomy:AgenticAIsystemscanoperateindependently,
makingdecisionsbasedontheirprogramming,learning,and
environmentalinputs.
Environmentinteraction:An
agenticAIinteractswithits
surroundings,perceivingchangesandadaptingitsstrategies
accordingly.
Work?owoptimisation:AgenticAIagentsenhancework?owsandbusinessprocessesbyintegratinglanguageunderstandingwith
reasoning,planning,and
decision-making.Thisinvolvesoptimisingresourceallocation,improvingcommunicationandcollaboration,andidentifyingautomationopportunities.
Learningcapability:ManyagenticAIsystemsemploymachinelearningor
reinforcementlearningtechniquestoimprovetheirperformanceovertime.
Multi-agentandsystem
conversation:AgenticAI
facilitatescommunication
betweendi?erentagentsto
constructcomplexwork?ows.Itcanalsointegratewithother
systemsortools,suchasemail,codeexecutors,orsearch
engines,toperformavarietyoftasks.
Learningcapability
Environmentinteraction
Work?ow
optimisation
Goal-oriented
behaviour
Autonomy
Multi-agentandsystemconversation
EvolutiontomultimodalGenAIagents
InAI,theonlyconstantischange—embraceacultureofperpetualinnovation.
Thejourneyofagenticframeworksbeganassimple,rule-basedsystemsdesignedtoperformspeci?ctasks.Overtime,thesesystemshaveevolvedintosophisticated,multimodalagentscapableofprocessingandintegratinginformationfromvarioussources,suchastext,images,andaudio.MultimodalitycapabilitiesallowAIagentstounderstand,employ
reasoning,andinteractlikehumans,enhancingtheire?ectivenessandversatilitytosolveawiderangeofbusinessproblems
4
.
Theevolutioncanbebrokendownintothreekeyphases:
(2000s)
IntegrationofMachineLearning(ML)
○Learningfromdata:TheintegrationofMLallowedagentstolearnfromlargedatasets,improvingtheirabilitytomakedecisionsandperformtasks.Thiswasasigni?cantstepforwardfromrule-basedsystems,asagentscouldnowadapttonewinformationandimproveovertime.
○NaturalLanguageProcessing(NLP)enableduserinteractions:AdvancesinNLPenabledagentstounderstandandgeneratehumanlanguagemoree?ectively,makinginteractionsmorenaturalandintuitive.
(2010s)
Introductionofmultimodality
○Combiningtext,images,andaudio:Multimodalagentsemerged,capableofprocessingandintegrating
informationfromvarioussources.Forinstance,anagentcouldanalyseatextdescription,recogniseobjectsinanimage,andunderstandspokencommands.Thismultimodalitymadeagentsmoreversatileandcapableofhandlingcomplextasks.
○Enhanceduserinteractions:Multimodalagentscouldinteractwithusersinmoredynamicways,suchasprovidingvisualaidsinresponsetotextqueriesorunderstandingcontextfromacombinationofspokenandvisualinputs.
2020s-present
Advancedautonomyandreal-timeinteractions
○Advancedautonomy:Agentscanoperateindependently,rationaliseandsettheirowngoals,developpath(s)toattainthesegoals,andmakeindependentdecisionswithoutconstanthumanintervention,leveragingdatafrommultiplesourcesorsyntheticdatasets.Inamulti-agenticorchestrationsystem,the?rstsetofagents
focusonmimickinghumanbehaviour(e.g.ChatGPT-4o),thatis,thinkingfasttocomeupwithsolution
approach,whilethesecondsetofagentsfocusonslowreasoning(e.g.ChatGPT-1o)tocomeupwithavettedsolution
5
.Combiningthinkingfastandslowreasoning,agentscanprocessinformationandmakeoptimal
decisionsinreal-time–crucialforapplicationslikeautonomousvehicles,real-timecustomerservice,and
variousmission-criticalbusinessprocesses.ThisautonomymakesagenticAIparticularlypowerfulindynamicandcomplexreal-worldenvironments.
○UserinteractionswithinanethicalandresponsibleAI-controlledenvironment:Withincreased
capabilities,therehasalsobeenafocusonensuringthatagenticsystemsoperateethicallyandresponsibly,consideringfactorssuchasbias,transparency,andaccountability.
IntegrationofML(2000s)
Learningfromdata
NLPenableduserinteractions
AIagent
Goal-orientedbehaviour
Introductionofmultimodality(2010s)
Combiningtext,images,andaudio
Enhanceduserinteractions
Advancedautonomyandreal-timeinteractions(2020s-present)
UserinteractionswithinanethicalandresponsibleAI-controlledenvironment
Human-likereasoningandadvancedautonomy
Whyorganisationsshouldpayattention
Inthefastlaneoftechnologicalevolution,missingtheAIturntodaymeansbeingoutpacedtomorrow.
AgenticAIo?erssigni?cantadvantagesine?ciency,decision-making,andcustomerinteraction.Byautomatingroutinetasksandprovidingintelligentinsights,agenticAIcanhelporganisationssavetime,reducecost,andimproveoverall
productivity.Moreover,organisationswhoadoptanagenticAIsystemcangainacompetitiveadvantagebyleveragingitscapabilitiestoinnovateandenhancetheirbusinessoperations.Lowercosttoentryandeconomiesofscalemakesit
favourablefororganisationstofullyharnessthecapabilitiesito?erscomparedtoitspredecessorsliketraditionalMLandRoboticProcessAutomation(RPA)-drivenautomations.
AgenticAIsystemscansigni?cantlyenhanceanorganisation’scompetitiveedgebyautomatingcomplexwork?ows,
reducingoperationalcosts,andimprovingdecision-makingprocesses.Thesesystemsaredesignedtoadapttochangingbusinessenvironments,drivinghigherproductivityandenablingorganisationstostaycompetitive.Forexample,agenticAIcanpredictmarkettrendsandcustomerpreferences,allowingbusinessestotailortheirstrategiesproactively.This
adaptabilitynotonlyimprovese?ciencybutalsofostersinnovation,givingcompaniesasigni?cantedgeovercompetitors
6
.
Moreover,agenticAIsystemscanhandlelargevolumesofdataandextractactionableinsights,whichcanbeusedtooptimiseoperationsandenhancecustomerexperiences.Byautomatingroutinetasks,thesesystemsfreeuphumanresourcestofocusonmorestrategicinitiatives,therebyincreasingoverallorganisationalagilityandresponsiveness
7
.
Enhanceddecision-making
AgenticAIsystemscananalysevastamountsofdataquicklyandaccurately,providingvaluableinsightstoinformbetterdecision-making.Businessescanleveragetheseinsightstooptimiserevenueandoperations,identifymarkettrends,andmakedata-drivendecisions.Forinstance,inthe?nancialsector,AIcananalysemarketdatatopredicttrends,inform
investmentstrategies,andboostinvestmentROI.Inretail,itcanstreamlineinventorymanagementbypredictingdemandandoptimisingstocklevels.
Boostede?ciencyandproductivity
AgenticAIcansigni?cantlyenhancebusinesse?ciencyandproductivitybyautomatingroutinetasksandprocesses.Thisallowsemployeestofocusonmorestrategicandcreativeactivities.Forexample,incustomerservice,agenticAIcan
handlecommoninquiries,freeinguphumanagentstotacklemorecomplexissues.Inmanufacturing,AI-drivenrobotscanmanagerepetitivetaskswithprecisionandconsistency,reducingerrorsandincreasingoutput.
Improvedcustomerexperience
ByintegratingagenticAI,businessescano?erpersonalisedandresponsivecustomerexperiences.AI-drivenchatbotsandvirtualassistantscanprovideinstantsupport,answerqueries,andevenrecommendproductsbasedoncustomer
preferencesanddynamicinteractions.Thisimprovescustomersatisfaction,buildsloyalty,anddrivessales.Forexample,e-commerceplatformsuseAItorecommendproductsbasedonbrowsinghistoryandpurchasebehaviour.
HowtoconceptualiseagenticAI
solutionsforfuturebusinessoperations
AgenticAIsystemsarerede?ningcustomerservicecentresandaregainingpopularityasagame-changingcapabilityforbothgovernmententitiesandprivatesectororganisations.Whiletraditionalrule-basedchatbots
(software-as-a-service)providedbasic24/7support,andRetrievalAugmentedGenerated(RAG)-basedchatbots
enhancedhuman-likeinteractions(enhancedsoftware-as-a-service),agenticAIsurpassesbothintermsofaccuracy,contextualcoherence,andproblem-solvingability.
Intermsofaccuracy,rule-basedchatbotsarelimitedtoprogrammedresponses,causinginaccuracieswhenqueries
falloutsideofprede?nedrules.RAG-basedchatbotsdependonretrieveddatathatmaynotmatchuserintent.In
contrast,thenovelapproachofagenticAIallowsittounderstandnuancesinlanguage,generatingaccurateresponseseventocomplexorunseenqueries.Itsabilitytolearnfromvastdatasetsenhancesprecisionandadaptability,makingitsuperiorforcustomerinteractions.
Oneofthebiggestlimitationsofchatbotshasbeencontextualcoherence.Rule-basedchatbotsstruggletomaintain
contextinextendedinteractionsduetolinearscripting,leadingtodisjointedresponsesthatharmcustomer
experience.RAG-basedchatbotsmayproduceinconsistentrepliesifretrievalmechanismsdon'tconsiderpreviousinteractions.WhereasagenticAI’sorchestrationcapabilityhelpsitexcelattrackingconversationhistory,
understandingdialogue?ow,ensuringresponsesremaincontextuallyappropriateandcoherent,signi?cantlyboostingcustomerengagement.
Thusfar,bothrule-basedandRAG-basedchatbotshavelimitedautonomousproblem-solvingability.Theformercan'thandleproblemsoutsidetheirscriptswhilethelatterprovideinformationbutcan'tsynthesisedataandpreparethe
human-liveproblem-solvinglogictosolvecomplexissuesacrossintegratedsourcessuchasCRMs,ERP,orIVR
systems.TheagenticAIperformsdynamicreasoninganddecision-making,leveragingaseriesofautonomousagents,analysingcustomerissues,consideringmultiplefactors,andapplyinglearnedknowledgetoresolveproblemsmore
e?ciently.Theoutcomeisquicker,solution-oriented,and?uidconversationsthatenhancecustomerexperienceandsetnewstandardsfore?ciencyandresponsivenessinautomatedcustomerservice.
Micro-agentsOrchestratoragentMasteragent
Customersupportagent
Customersupportagent
User
experience
agent
Issue
resolution
agent
Feedback
collection
agent
FAQagent
Nthagent
Statusupdatesagent
AgenticAIbusinessimperatives
Organisationsmanagingday-to-dayoperationsstandtogainsigni?cantlyfromagenticAIsystems,embracingthe
emerging"service-as-a-software"model.Thisinnovativeapproachtransformsmanuallabourintoautomated,AI-drivenservices.Ratherthanpurchasingtraditionalsoftwarelicencesorsubscribingtocloud-basedsoftware-as-a-service
(SaaS),businessescannowpayforspeci?coutcomesdeliveredbyAIagents.Forexample,acompanymightemployAIcustomersupportagentslikeSierratoresolveissuesontheirwebsites,payingperresolutionratherthanmaintainingacostlyhumansupportteam.Thismodelallowsorganisationstoaccessawiderrangeofservices–whetherit’slegalsupportfromAI-poweredlawyers,continuouscybersecuritytestingbyAIpenetrationtesters,orautomatedCRM
management–atafractionofthecost.Thisnotonlydrivese?ciencybutalsosigni?cantlyreducesoperationaloverheads.
Byleveragingtheservice-as-a-softwaremodel,businessescanautomatebothroutineandhighlyspecialisedtasksthatwereoncetime-consuming,requiredskilledprofessionals,andtypicallyinvolvedexpensivesoftwarelicencesorcloud
solutions.AIapplicationswithadvancedreasoningcapabilitiescannowhandlecomplextasks,fromsoftware
engineeringtorunningcustomercarecentres,enablingcompaniestoscaletheiroperationswithoutaproportionalincreaseincost.Thistransitionexpandstheservicesavailabletoorganisationsofallsizes,freeingthemtofocusonstrategicprioritieswhileAIsystemsmanagetheoperationalburden.AdoptingtheseAI-drivenservicespositions
businessestostaycompetitiveinanever-evolvingmarketplace
8
.
Transitioningfromcopilottoautopilotmodels
Service-as-a-softwarerepresentsanoutcome-focused,strategicshift,enablingorganisationstotransitionfromtheircurrentstatetooperatingin"copilot"andultimately"autopilot"modes.Sierra,forinstance,o?ersasafetynetby
escalatingcomplexcustomerissuestohumanagentswhennecessary,ensuringaseamlesscustomerexperience.WhilenotallAIsolutionso?erthisbuilt-infallback,acommonstrategyistoinitiallydeployAIina"copilot"role
alongsidehumanworkers.Thishuman-in-the-loopapproachhelpsorganisationsbuildtrustinAIcapabilitiesovertime.AsAIsystemsdemonstratetheirreliability,businessescancon?dentlytransitiontoan"autopilot"mode,whereAI
operatesautonomously,enhancinge?ciencyandreducingtheneedforhumanoversight.GitHubCopilotisaprimeexampleofthis,assistingdevelopersandpotentiallyautomatingmoretasksasitevolves.
OutsourcingworkthroughAIservices
Fororganisationswithhighoperationalcosts,outsourcingspeci?ctaskstoAIservicesthatguaranteeconcrete
outcomesisanincreasinglyattractiveoption.TakeSierra,forexample:businessesintegrateSierraintotheircustomersupportsystemstoe?cientlymanagecustomerqueries.Insteadofpayingforsoftwarelicencesorcloud-based
services,theypaySierrabasedonthenumberofsuccessfulresolutions.Thisoutcome-basedmodelalignscostsdirectlywiththeresultsdelivered,allowingorganisationstoharnessAIforspeci?ctasksandpaysolelyforthe
outcomesachieved.
ThisshiftfromtraditionalsoftwarelicencesorcloudSaaStoservice-as-a-softwareistransformativeinseveralways:
Targetingservicepro?ts:TraditionalSaaSfocusedonsellinguserseats,whereasservice-as-a-softwaretapsintoservicepro?tpools,deliveringsolutionsthatfocusonspeci?cbusinessoutcomes.
Outcome-basedpricing:Insteadofchargingperuserorseat,service-as-a-softwareadoptsapricingmodelbasedontheactualoutcomesachieved,directlyaligningcostswithresults.
High-touchdeliverymodels:Service-as-a-softwareo?ersatop-down,highlypersonalisedapproach,providingtrusted,tailoredsolutionsthatmeetthespeci?coperationalneedsofbusinesses.
Whyshouldorganisationsconsiderearlyadoptionandavoidbeinglatemovers?
Latemovers
Earlyadopters
Struggletocatchupandmissoutoncreatingcompetitiveadvantage.
SlowtoinnovatebusinessprocessesandtakefulladvantageofAIsolutionstocreatedi?erentiation.
Playcatch-uptomatchthepersonalisedservicesofearlyadopters.
Higherlostopportunitycostduetolateentryandadoptions.
Missoutonearlylearningopportunitiesandindustryin?uence.
Struggletoachievesimilarmarketshare.
Facehigherbarrierstoentryduetoestablishedcompetitors.
Payrelativelylowercostofentryandlowerlearningandexperiments.
Marketposition
Innovation
Customer
relationships
Operationale?ciency
Learningcurve
Marketshare
Barrierstoentry
Costtoentry
Setindustrybenchmarks
andgain?rst-movermarketadvantage.
LeverageAItoinnovatebusiness
processes,deploytheAIsolutionse?ectivelyandcreatedi?erentiation.
Builddeepercustomerrelationshipsthroughpersonalisedandnewer
experiences.
Streamlineoperationsandreduceoperationalcostearlyon.
Bene?tfromtheinitiallearningcurveandshapeindustrystandards.
Increasemarketshareandpro?tabilitythroughearlyadoption.
CreatebarriersforcompetitorsthroughdeepAIintegration.
Payrelativelyhighercostofentryanditerativetest-and-learnduetonewAIsolutions.
Real-worldsuccessstories
Catalysingchangeacrossallindustries
Manufacturing:SiemensAG
SiemenstransformeditsmaintenanceoperationsbydeployingAImodelsthatanalysesensordatafrommachinery.Thesystempredictsequipmentfailuresbeforetheyoccur,schedulingmaintenanceproactively.Themultimodalframeworkprocessesdatafromvarioussources–vibration,temperature,andacousticsignals–providingaholisticviewof
equipmenthealthandproactivemaintenanceorchestratedbytheagenticAImodels.
Financialimpact:
●Savings:Reducedmaintenancecostsby20%
●Revenuegrowth:Increasedproductionuptimeby15%
Non-?nancialbene?ts:
●Enhancedequipmentreliability
●Improvedworkersafety
Technologystack:
●AImodels:Regressionanddeeplearningmodels
●Platforms:SiemensMindSphere
9
●Tools:Scikit-learn,TensorFlow,Keras,IoTsensors
Healthcare:MayoClinic
ByintegratingAIintoitsradiologywork?ows,MayoClinicallowsforquickerandmoreaccuratediagnoses.ThemultimodalAIprocessesimagingdataalongsidepatienthistoryandlabresults,o?eringcomprehensiveinsightsthataidradiologistsindecision-making,automatingdocumentationandprocessautomationacrosstheradiologyvaluechain.
Financialimpact:
●E?ciencygains:Reduceddiagnostictimesby30%
●Costreduction:Lowered
unnecessaryproceduresby15%
Non-?nancialbene?ts:
●Improveddiagnosticaccuracy
●Enhancedpatientoutcomes
Technologystack:
●AIModels:Regressionand
ConvolutionalNeuralNetworks(CNNs)models
●Frameworks:NVIDIAClaraplatform
10
●Tools:Scikit-learn,PyTorch,MedicalImagingData
Finance:JPMorganChase
JPMorgan’sContractIntelligence(COiN)platformusesAItoanalyselegaldocuments,extractingkeydatapointsin
seconds.Themultimodalframeworkinterpretscomplexlegallanguage,images,andtables,streamliningaprocessthatoncetookthousandsofhumanhours.
Financialimpact:
●Savings:Saved360,000hoursofmanualreviewannually
●Riskmitigation:Signi?cantlyreducedcompliancerisk
Non-?nancialbene?ts:
●Enhancedaccuracyindocumentanalysis
●Improvedemployeeproductivity
Technologystack:
●AImodels:NLPwithGenerativePre-trainedTransformers(GPT)
●Frameworks:COiNplatform
11
●Tools:Python,Hadoop
Retail:Amazon
AmazonleveragesAItoanalysebrowsingbehaviour,purchasehistory,andevenvisualpreferences.MultimodalAImodelsgeneratepersonalisedrecommendations,orchestratetasksacrossorderful?lmentvaluechains,andenhancethe
shoppingexperiencetodrivesales.
Financialimpact:
●Revenueboost:Increasedsalesby35%throughpersonalised
recommendationsandone-clickorderful?lment
●Customerretention:Improvedloyaltyratesby20%
Non-?nancialbene?ts:
●Enhancedcustomersatisfaction
●Increasedengagementtimeontheplatform
Technologystack:
●AImodels:RegressionanddeeplearningModels
●Frameworks:Amazon
Personalise
12
andAmazonOrderFul?lment
●Tools:AWSSageMaker
Transportationandlogistics:DHL
DHLutilisesAImodelstopredictandorchestrateshippingdemands,optimiseroutes,andmanagewarehouseoperations.Thesystemprocessesdatafromvarioussources,includingtra?cpatterns,weatherconditions,andordervolumes.
Financialimpact:
●Costsavings:Reducedoperationalcostsby15%
●E?ciencygains:Improveddeliverytimesby20%
Non-?nancialbene?ts:
●Enhancedcustomersatisfaction
●Reducedcarbonfootprint
Technologystack:
●AImodels:MLmodelsandrouteoptimisationalgorithms
●Frameworks:DHLResilientsupplychainplatform
13
●Tools:IoTdevices,MLmodels
Energy:BP(BritishPetroleum)
BPusesAItoanalyseseismicdata,generating3Dmodelsofsubterraneanstructures.Themultimodalapproachcombinesgeological,geophysical,andhistoricaldatatoidentifyfavourabledrillingsitesandorchestratedrillingequipmentsettings
foroptimaloutcomes.
Financialimpact:
●Savings:Reducedexplorationcostsby20%
●Revenuegrowth:Increased
successfuldrillingoperationsby15%
Non-?nancialbene?ts:
●Reducedenvironmentalimpact
●Improvedsafetymeasures
Technologystack:
●AImodels:RegressionandGenAImodels
●Frameworks:Azurecloudservices
14
●Tools:MicrosoftAI
Education:Pearson
Pearson’sAImodelstailoreducationalcontenttoindividuallearnerneeds,adjustingdi?cultylevelsandcontenttypesbasedonperformanceandengagementdata.
Financialimpact:
●Revenueincrease:Boostedcourseenrollmentby25%
●Costreduction:Lowered
contentdevelopmentcostsby15%
Non-?nancialbene?ts:
●Improvedstudentoutcomes
●Enhanceduserengagement
Technologystack:
●AImodels:Adaptivelearningalgorithms
●Frameworks:Multimodalcontentdeliverysystems
15
●Tools:Python,TensorFlow
Mediaandentertainment:Net?ix
Net?ixusesAImodelstorecommendandorchestratecontentbyanalysingviewinghabits,ratings,andevenvisual
contentfeatures.Themulti-modalAIensuresthatusers?ndcontentthatresonateswiththeirpreferences,keepingthemengaged.
Financialimpact:
●Subscribergrowth:Increasedretentionratesby10%
●Revenueboost:Enhanced
engagementleadingtohighersubscriptionrenewals
Non-?nancialbene?ts:
●Personaliseduserexperiences
●Improvedcontentstrategy
Technologystack:
●AImodels:MLandGenAImodels
●Frameworks:Net?ixmultimodaluserinteractionanalysis
16
●Tools:AWS,ApacheSpark
Telecommunications:AT&T
AT&T’sAImodelsanalyseandorchestratenetworkperformancedataandcustomerinteractionstooptimisenetworkoperationsandpersonalisecustomerservicethroughchatbots.
Financialimpact:
●Costsavings:Reduced
operationalexpensesby15%
●Revenuegrowth:Improved
upsellingthroughpersonalisedo?ers
Non-?nancialbene?ts:
●Enhancednetworkreliability
●Improvedcustomersatisfaction
Technologystack:
●AImodels:MLfornetworkanalytics
●Frameworks:Edgecomputingwithmultimodaldatainputs
17
●Tools:AIchatbots,dataanalyticsplatforms
Governmentandpublicsector:SingaporeGovernment
SingaporeutilisesAImodelstoorchestrateandmanagetra?c?ow,energyconsumption,andpublicsafety.The
multi-modalsystemprocessesdatafromvarioussensorsandcitizenfeedbackmechanismstomakereal-timedecisions.
Financialimpact:
●E?ciencygains:Reducedadministrativecostsby25%
●Economicgrowth:AttractedUS$12billioninforeign
investment
Non-?nancialbene?ts:
●Improvedpublicservices
●Enhancedqualityoflifeforcitizens
Technologystack:
●AImodels:MLandGenAImodels
●Frameworks:SmartNationplatform
18
●Tools:IoTsensors,cloudcomputing
Real-worldsuccessstories
Innovationwithinbusinessfunctions
Humanresources:Unilever
UnileverusesAItoscreencandidatesbyanalysingvideointerviewsandresponses,allowingrecruiterstofocusonthemostpromisingapplicants.
Financialimpact:
●Costreduction:SavedoverUS$1millionannuallyin
recruitmentcosts
●E?ciencygains:Reducedhiringtimeby75%
Non-?nancialbene?ts:
●Enhanceddiversityinhiring
●Improvedcandidateexperience
Technologystack:
●AImodels:NLPandfacialrecognitionalgorithms
●Frameworks:Multimodalcandidateassessmentplatforms
19
●Tools:HireVueAIplatform
Customerservice:BankofAmerica
Erica,anAIvirtualagent,handlesoveramillioncustomerqueriesdaily–includingsnapshotsofmonth-to-datespendingand?aggingrecurringc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房地產(chǎn)典當(dāng)與房地產(chǎn)代理銷售合同3篇
- 政府招標(biāo)知識培訓(xùn)課件
- 期末班主任工作總結(jié)
- 社區(qū)商業(yè)知識培訓(xùn)課件
- 加工運(yùn)動鞋15萬雙服裝10萬件項目可行性研究報告寫作模板-拿地申報
- 嘉興市平湖市2024學(xué)年第一學(xué)期小學(xué)語文四年級期末檢測卷 (2025.1)參考答案及評分建議(定稿)
- 土壤保水知識培訓(xùn)課件
- 2024-2025學(xué)年陜西省延安市延長縣八年級(上)期末英語試卷(含答案)
- 河南省信陽市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版能力評測((上下)學(xué)期)試卷及答案
- 2025商業(yè)地產(chǎn)蛇年新春年貨節(jié)(年貨更有味闔家團(tuán)圓年主題)活動策劃方案-51正式版
- 智能終端安全檢測
- 新能源發(fā)電技術(shù) 電子課件 1.4 新能源發(fā)電技術(shù)
- DB34-T 4859-2024 農(nóng)村河道清淤規(guī)范
- 中學(xué)物業(yè)管理服務(wù)采購?fù)稑?biāo)方案(技術(shù)方案)
- 福建中閩能源股份有限公司招聘筆試題庫2024
- 康復(fù)科年度工作亮點(diǎn)與展望計劃
- 冀教版二年級(上)數(shù)學(xué)加減乘除口算題卡
- 【期中考后反思】《反躬自省,砥礪奮進(jìn)》-2022-2023學(xué)年初中主題班會課件
- 材料采購服務(wù)方案(技術(shù)方案)
- 2024反詐知識競賽考試題庫及答案(三份)
- 中國傳統(tǒng)文化知識競賽考試題庫300題(含答案)
評論
0/150
提交評論