2024屆山西省大同市第三中學(xué)高三下學(xué)期十月階段性考試試題數(shù)學(xué)試題_第1頁
2024屆山西省大同市第三中學(xué)高三下學(xué)期十月階段性考試試題數(shù)學(xué)試題_第2頁
2024屆山西省大同市第三中學(xué)高三下學(xué)期十月階段性考試試題數(shù)學(xué)試題_第3頁
2024屆山西省大同市第三中學(xué)高三下學(xué)期十月階段性考試試題數(shù)學(xué)試題_第4頁
2024屆山西省大同市第三中學(xué)高三下學(xué)期十月階段性考試試題數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023屆山西省大同市第三中學(xué)高三下學(xué)期十月階段性考試試題數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.2.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.3.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.4.已知集合,,若,則實數(shù)的值可以為()A. B. C. D.5.復(fù)數(shù)()A. B. C.0 D.6.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.8.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線9.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.10.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.11.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或12.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.14.已知函數(shù),則下列結(jié)論中正確的是_________.①是周期函數(shù);②的對稱軸方程為,;③在區(qū)間上為增函數(shù);④方程在區(qū)間有6個根.15.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.16.西周初數(shù)學(xué)家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達哥拉斯定理五百到六百年.我們把可以構(gòu)成一個直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個數(shù)中隨機抽取3個數(shù),則這3個數(shù)能構(gòu)成勾股數(shù)的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標(biāo)原點在以為直徑的圓上,且,求的取值范圍.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.21.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.22.(10分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.2.A【解析】

依題意,如圖以為坐標(biāo)原點建立平面直角坐標(biāo)系,表示出點的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點建立平面直角坐標(biāo)系,由,,,,,,,因為點在線段的延長線上,設(shè),解得,所在直線的方程為因為點在邊所在直線上,故設(shè)當(dāng)時故選:【點睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.3.D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.4.D【解析】

由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.5.C【解析】略6.D【解析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對應(yīng)的點為,在第四象限故選:D【點睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.7.C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.8.C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.9.B【解析】

設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.10.C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.11.D【解析】

根據(jù)逆運算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項.【詳解】因為,所以當(dāng),解得

,所以3是輸入的x的值;當(dāng)時,解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【點睛】本題考查了程序框圖的簡單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.12.D【解析】

,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.14.①②④【解析】

由函數(shù),對選項逐個驗證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故①正確;當(dāng)或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,,故②正確;當(dāng)時,,此時在上單調(diào)遞減,在上單調(diào)遞增,在區(qū)間上不是增函數(shù),故③錯誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個根,故④正確.故答案為:①②④.【點睛】本題考查三角恒等變換,考查三角函數(shù)的性質(zhì),屬于中檔題.15.【解析】

設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運算求解的能力,屬于難題.16.【解析】

由組合數(shù)結(jié)合古典概型求解即可【詳解】從11個數(shù)中隨機抽取3個數(shù)有種不同的方法,其中能構(gòu)成勾股數(shù)的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數(shù)學(xué)文化,考查組合問題,數(shù)據(jù)處理能力和應(yīng)用意識.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點、,聯(lián)立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.【點睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運用,解題時要認真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化,考查計算能力,屬于中等題.18.(1)當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】

(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時,,∴成立.當(dāng)時,,,∴.當(dāng)時,,,∴,即.綜上.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19.(1)見證明;(2)【解析】

(1)取的中點,連接,要證平面平面,轉(zhuǎn)證平面,即證,即可;(2)以為坐標(biāo)原點,以為軸正方向,建立如圖所示的空間直角坐標(biāo)系,分別求出平面與平面的法向量,代入公式,即可得到結(jié)果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,,在中,由正弦定理,得:,所以.以為坐標(biāo)原點,以為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.20.(1),;(2).【解析】

(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標(biāo)方程變形為,進而可得出曲線的直角坐標(biāo)方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標(biāo)方程變形為,所以,曲線的直角坐標(biāo)方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程之間的相互轉(zhuǎn)換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.21.見解析【解析】

(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.22.(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論