版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省中山一中等六校高考考前提分數(shù)學(xué)仿真卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.2.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b3.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-324.已知當(dāng),,時,,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定5.已知,且,則在方向上的投影為()A. B. C. D.6.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于7.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.8.的展開式中有理項有()A.項 B.項 C.項 D.項9.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.10.如圖,在中,,且,則()A.1 B. C. D.11.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.12.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙二、填空題:本題共4小題,每小題5分,共20分。13.在面積為的中,,若點是的中點,點滿足,則的最大值是______.14.小李參加有關(guān)“學(xué)習(xí)強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.15.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.16.在中,若,則的范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項公式;若數(shù)列滿足,求的前項和.20.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.22.(10分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次小(如5,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數(shù)學(xué)期望;(2)趙四購物恰好滿600元,假設(shè)他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.2、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A【點睛】本題考查導(dǎo)數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.3、A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.4、C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.5、C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.6、D【解析】
試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.7、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.8、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當(dāng),,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.9、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.10、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.11、A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.12、A【解析】
利用逐一驗證的方法進行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點睛】本題將數(shù)學(xué)知識與時政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識、邏輯推理能力的考查.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由任意三角形面積公式與構(gòu)建關(guān)系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉(zhuǎn)化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當(dāng)且僅當(dāng)時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.14、【解析】
從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).15、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進而可求,然后結(jié)合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.16、【解析】
借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.【點睛】本題考查了三角函數(shù)的化簡,重點考查學(xué)生的計算能力,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18、(1)證明見解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標,設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設(shè),則,又因為,所以.所以.設(shè)平面的法向量為,則,即,令,則.于是.又因為,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.19、,;.【解析】
由,公差,有,,成等比數(shù)列,所以,解得.進而求出數(shù)列,的通項公式;當(dāng)時,由,所以,當(dāng)時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項公式.?dāng)?shù)列的公比,其通項公式.當(dāng)時,由,所以.當(dāng)時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項公式,前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,方程思想,分類討論思想,應(yīng)用意識,屬于中檔題.20、(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因為線段的中點坐標為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關(guān)系求直線方程,涉及韋達定理的應(yīng)用,屬中檔題.22、(1)分布見解析,期望為;(2).【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)借款合同的格式和條款
- 城中村房產(chǎn)交易合同格式
- 經(jīng)典喪葬服務(wù)合同示范文本
- 陶瓷杯供應(yīng)協(xié)議
- 簡約室內(nèi)門購銷合同
- 電機及控制系統(tǒng)升級購銷合同
- 水泥購銷簡化合同
- 權(quán)威認證企業(yè)品牌服務(wù)合同
- 2024年新型建筑材料研發(fā)生產(chǎn)投資合同
- 2024年四川省建筑安全員《A證》考試題庫及答案
- 私立民辦高中學(xué)校項目投資計劃書
- 2024屆貴陽市八年級物理第一學(xué)期期末檢測試題含解析
- 新教材部編版道德與法治五年級上冊第四單元測試題及答案
- 農(nóng)村原民辦代課教師教齡補助申請表
- 高邊坡專項施工方案樣本
- 2023年污水站設(shè)備維修 污水處理廠設(shè)備維護方案(五篇)
- 實用牛津樹授課PPT27. ORT-PreK-L27-The-Dream-200602105041-200815212000
- 秦始皇英文介紹ppt
- 研究十二生肖的文獻
- 妊娠劇吐的護理查房【產(chǎn)科】-課件
- 2022貴州省專業(yè)技術(shù)人員繼續(xù)教育公需科目考試題庫課件二
評論
0/150
提交評論