版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶八中2025屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,2.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.3.若的二項(xiàng)展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.74.若集合,,則=()A. B. C. D.5.以,為直徑的圓的方程是A. B.C. D.6.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題7.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.8.已知函數(shù),關(guān)于x的方程f(x)=a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)9.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.10.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.11.已知集合,集合,則A. B.或C. D.12.的二項(xiàng)展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-28二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.14.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.15.設(shè)、分別為橢圓:的左、右兩個(gè)焦點(diǎn),過作斜率為1的直線,交于、兩點(diǎn),則________16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長(zhǎng)為2,為棱的中點(diǎn).(1)面出過點(diǎn)且與直線垂直的平面,標(biāo)出該平面與正方體各個(gè)面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.18.(12分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過點(diǎn),過點(diǎn)且不平行于坐標(biāo)軸的直線交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交軸于點(diǎn).(1)求的周長(zhǎng);(2)求面積的最大值.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說明理由.22.(10分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足>1,求實(shí)數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無(wú)窮大,最小可到無(wú)窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對(duì)目標(biāo)函數(shù)幾何意義的認(rèn)識(shí),屬于基礎(chǔ)題.2、C【解析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).3、B【解析】
先化簡(jiǎn)的二項(xiàng)展開式中第項(xiàng),然后直接求解即可【詳解】的二項(xiàng)展開式中第項(xiàng).令,則,∴,∴(舍)或.【點(diǎn)睛】本題考查二項(xiàng)展開式問題,屬于基礎(chǔ)題4、C【解析】試題分析:化簡(jiǎn)集合故選C.考點(diǎn):集合的運(yùn)算.5、A【解析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡(jiǎn)整理得,所以本題答案為A.【點(diǎn)睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.6、B【解析】
由的單調(diào)性,可判斷p是真命題;分類討論打開絕對(duì)值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對(duì)于命題q,當(dāng),即時(shí),;當(dāng),即時(shí),,由,得,無(wú)解,因此命題q是假命題.所以為假命題,A錯(cuò)誤;為真命題,B正確;為假命題,C錯(cuò)誤;為真命題,D錯(cuò)誤.故選:B【點(diǎn)睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、D【解析】
原問題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時(shí),g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個(gè)不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.9、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.10、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時(shí),有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】
由可得,解得或,所以或,又,所以,故選C.12、A【解析】試題分析:由題意得,二項(xiàng)展開式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.14、【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻?,故三棱錐的外接球就是對(duì)應(yīng)棱長(zhǎng)為2的正方體的外接球.且外接球的球心為正方體的體對(duì)角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時(shí),取得最大值.而當(dāng)在同一個(gè)大圓上,且,點(diǎn)與線段在球心的異側(cè)時(shí),取得最大值,如圖所示:此時(shí),故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.15、【解析】
由橢圓的標(biāo)準(zhǔn)方程,求出焦點(diǎn)的坐標(biāo),寫出直線方程,與橢圓方程聯(lián)立,求出弦長(zhǎng),利用定義可得,進(jìn)而求出?!驹斀狻坑芍裹c(diǎn),所以直線:,代入得,即,設(shè),,故由定義有,,所以。【點(diǎn)睛】本題主要考查橢圓的定義、橢圓的簡(jiǎn)單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長(zhǎng)的求法,注意直線過焦點(diǎn),位置特殊,采取合適的弦長(zhǎng)公式,簡(jiǎn)化運(yùn)算。16、【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2).【解析】
(1)與平面垂直,過點(diǎn)作與平面平行的平面即可(2)建立空間直角坐標(biāo)系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點(diǎn),則垂直于平面.(2)建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點(diǎn)睛】考查確定平面的方法以及線面角的求法,中檔題.18、(1)12(2)【解析】
(1)根據(jù)焦距得焦點(diǎn)坐標(biāo),結(jié)合橢圓上的點(diǎn)的坐標(biāo),根據(jù)定義;(2)求出橢圓的標(biāo)準(zhǔn)方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達(dá)定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點(diǎn),由橢圓定義知:,故,因此,的周長(zhǎng);(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當(dāng)且僅當(dāng)在短軸頂點(diǎn)處取等,故面積的最大值為.【點(diǎn)睛】此題考查根據(jù)橢圓的焦點(diǎn)和橢圓上的點(diǎn)的坐標(biāo)求橢圓的標(biāo)準(zhǔn)方程,根據(jù)直線與橢圓的交點(diǎn)關(guān)系求三角形面積的最值,涉及韋達(dá)定理的使用,綜合性強(qiáng),計(jì)算量大.19、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因?yàn)?所以又,故,所以,所以(2)由(1)得,,,所以,所以,因?yàn)榍?即,解得,因?yàn)?所以,所以,所以,所以【點(diǎn)睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡(jiǎn),考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運(yùn)算能力.20、(1)或;(2).【解析】
(1)利用絕對(duì)值的幾何意義,將不等式,轉(zhuǎn)化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對(duì)值三角不等式求得的最小值即可.【詳解】(1)原不等式等價(jià)于或或,解得:或,∴不等式的解集為或.(2)因?yàn)?2在R上恒成立,而,所以,解得,所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法和不等式恒成立問題,還考查了運(yùn)算求解的能力,屬于中檔題.21、(1)(2)直線恒過定點(diǎn),詳見解析【解析】
(1)依題意由橢圓的簡(jiǎn)單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點(diǎn)的坐標(biāo),同理可求出點(diǎn)的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡(jiǎn)成點(diǎn)斜式,即可求出定點(diǎn)坐標(biāo).【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當(dāng)時(shí),由有.∴,同理,又∴,當(dāng)時(shí),∴直線的方程為∴直線恒過定點(diǎn),當(dāng)時(shí),此時(shí)也過定點(diǎn)..綜上:直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點(diǎn)問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于難題.22、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動(dòng)區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來進(jìn)行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進(jìn)而等價(jià)于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的最值,得到a≤,再利用導(dǎo)數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當(dāng)t≥1時(shí),f(x)在[t,t+1]上單調(diào)遞增,f(x)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化產(chǎn)品自動(dòng)化生產(chǎn)線構(gòu)建-洞察分析
- 醫(yī)療器械合作的意向書(5篇)
- 創(chuàng)意美術(shù)教育課程設(shè)計(jì)的多維探索
- 從學(xué)校到家庭安全教育的雙重挑戰(zhàn)
- 辦公樓內(nèi)食堂的食品安全監(jiān)管與教育
- 2025車庫(kù)買賣合同范本2
- 以實(shí)驗(yàn)為基的科學(xué)教學(xué)方法探索
- 2025單位臨時(shí)工聘合同書
- 從職場(chǎng)角度探討心理輔導(dǎo)的重要性
- 2025授予虛擬股合同
- 城市建設(shè)苗木吊裝安全方案
- 中醫(yī)院醫(yī)生作風(fēng)建設(shè)工作方案(6篇)
- DIY手工坊創(chuàng)業(yè)項(xiàng)目計(jì)劃書
- (高清版)DB21∕T 1795-2021 污水源熱泵系統(tǒng)工程技術(shù)規(guī)程
- 【MOOC】商業(yè)銀行管理學(xué)-湖南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024年山西建設(shè)投資集團(tuán)有限公司校園招聘考試筆試試題及答案解析
- 護(hù)理脊柱外科出科
- 2024江蘇鹽城港控股集團(tuán)限公司招聘23人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年陜西省初中學(xué)業(yè)水平考試·數(shù)學(xué)
- 2024年三支一扶考試基本能力測(cè)驗(yàn)試題及解答參考
- 快遞員合同協(xié)議書格式
評(píng)論
0/150
提交評(píng)論