版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆新疆阿克蘇地區(qū)庫車縣二中高考數學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象大致是()A. B.C. D.2.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.3.已知,,,若,則()A. B. C. D.4.已知復數z滿足i?z=2+i,則z的共軛復數是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i5.國家統(tǒng)計局服務業(yè)調查中心和中國物流與采購聯合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經理指數(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數為49.4%D.12個月的PMI值的中位數為50.3%6.已知將函數(,)的圖象向右平移個單位長度后得到函數的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.7.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.38.下列函數中,圖象關于軸對稱的為()A. B.,C. D.9.已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.210.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.11.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.8012.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正實數滿足,則的最小值為.14.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____15.設為定義在上的偶函數,當時,(為常數),若,則實數的值為______.16.已知橢圓Г:,F1、F2是橢圓Г的左、右焦點,A為橢圓Г的上頂點,延長AF2交橢圓Г于點B,若為等腰三角形,則橢圓Г的離心率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,,使得對任意兩個不等的正實數,都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.18.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.19.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.20.(12分)已知曲線的參數方程為為參數,曲線的參數方程為為參數).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.21.(12分)在平面直角坐標系xOy中,拋物線C:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為().(1)求拋物線C的極坐標方程;(2)若拋物線C與直線l交于A,B兩點,求的值.22.(10分)已知函數(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.2、B【解析】
因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.3、B【解析】
由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.4、D【解析】
兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復數為1+2i,選D.【點睛】的共軛復數為5、D【解析】
根據圖形中的信息,可得頻率、平均值的估計、眾數、中位數,從而得到答案.【詳解】對A,從圖中數據變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數為49.4%,故C正確,;對D,12個月的PMI值的中位數為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數、中位數計算,考查數據處理能力,屬于基礎題.6、B【解析】
因為將函數(,)的圖象向右平移個單位長度后得到函數的圖象,可得,結合已知,即可求得答案.【詳解】將函數(,)的圖象向右平移個單位長度后得到函數的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數圖象平移和根據圖象對稱求參數,解題關鍵是掌握三角函數圖象平移的解法和正弦函數圖象的特征,考查了分析能力和計算能力,屬于基礎題.7、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.8、D【解析】
圖象關于軸對稱的函數為偶函數,用偶函數的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數為偶函數;A中,,,故為奇函數;B中,的定義域為,不關于原點對稱,故為非奇非偶函數;C中,由正弦函數性質可知,為奇函數;D中,且,,故為偶函數.故選:D.【點睛】本題考查判斷函數奇偶性.判斷函數奇偶性的兩種方法:(1)定義法:對于函數的定義域內任意一個都有,則函數是奇函數;都有,則函數是偶函數(2)圖象法:函數是奇(偶)函數函數圖象關于原點(軸)對稱.9、A【解析】
設點的坐標為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結合,可得到的齊次方程,進而可求出離心率的值.【詳解】設點的坐標為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點睛】本題考查雙曲線的離心率,構造的齊次方程是解決本題的關鍵,屬于中檔題.10、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.11、D【解析】
根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.12、B【解析】
根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由題意結合代數式的特點和均值不等式的結論整理計算即可求得最終結果.【詳解】.當且僅當時等號成立.據此可知:的最小值為4.【點睛】條件最值的求解通常有兩種方法:一是消元法,即根據條件建立兩個量之間的函數關系,然后代入代數式轉化為函數的最值求解;二是將條件靈活變形,利用常數代換的方法構造和或積為常數的式子,然后利用基本不等式求解最值.14、【解析】
雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.15、1【解析】
根據為定義在上的偶函數,得,再根據當時,(為常數)求解.【詳解】因為為定義在上的偶函數,所以,又因為當時,,所以,所以實數的值為1.故答案為:1【點睛】本題主要考查函數奇偶性的應用,還考查了運算求解的能力,屬于基礎題.16、【解析】
由題意可得等腰三角形的兩條相等的邊,設,由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結合余弦定理,易得在中,,所以,即e==,故答案為:.【點睛】此題考查橢圓的定義及余弦定理的簡單應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)根據題意,在上單調遞減,求導得,分類討論的單調性,結合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構造函數,根據導數研究單調性,求出,即可證出結論.【詳解】(1)根據題意,對任意兩個不等的正實數,都有恒成立.則在上單調遞減,因為,當時,在內單調遞減.,當時,由,有,此時,當時,單調遞減,當時,單調遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構造函數.則,所以函數在上單調遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導數研究函數的單調性求函數的解析式、以及利用構造函數法證明不等式,考查轉化思想、解題分析能力和計算能力.18、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設直線,直線方程與橢圓方程聯立,根據韋達定理求根與系數的關系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設點的橫坐標為,直線與橢圓方程聯立求點的坐標,第二步再整理點的坐標,如果能構成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設點的橫坐標為.∴由得,即將點的坐標代入直線的方程得,因此.四邊形為平行四邊形當且僅當線段與線段互相平分,即∴.解得,.∵,,,∴當的斜率為或時,四邊形為平行四邊形.考點:直線與橢圓的位置關系的綜合應用【一題多解】第一問涉及中點弦,當直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標,求直線的斜率,或知道直線斜率求中點坐標的關系,或知道求直線斜率與直線斜率的關系時,也可以選擇點差法,設,,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結果,(2)對于用坐標法來解決幾何性質問題,那么就要求首先看出幾何關系滿足什么條件,其次用坐標表示這些幾何關系,本題的關鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯立求兩個坐標,最后求斜率.19、(1)(2)【解析】
(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.20、(1),(2)0【解析】
(1)分別把兩曲線參數方程中的參數消去,即可得到普通方程;(2)把直線的參數方程代入的普通方程,化為關于的一元二次方程,再由根與系數的關系及此時的幾何意義求解.【詳解】(1)由曲線的參數方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 診斷學基礎復習試題及答案
- 貴州xx城鎮(zhèn)老舊小區(qū)改造項目可行性研究報告
- 云計算風險評估與應對策略
- 2024年版全株青貯玉米交易協(xié)議規(guī)范版B版
- 2024年離職員工保密協(xié)議與離職后商業(yè)秘密保護服務合同3篇
- 2024年度水電消防設施運營管理與維護承包合同3篇
- 2024年煤炭開采企業(yè)原煤采購安全生產責任書3篇
- 2024年林業(yè)育苗資源整合與開發(fā)合同協(xié)議3篇
- 中外名著:《活著》讀后感1500字
- 小型教務系統(tǒng)課程設計
- 《儒林外史》專題復習課件(共70張課件)
- 2024年廣州市南沙區(qū)初中語文畢業(yè)班模擬考試卷(附答案解析)
- 簡單室內裝修合同2024年
- 重慶江北國際機場有限公司招聘筆試題庫2024
- 第11講 地表形態(tài)與人類活動(高考一輪復習課件)
- 地下水動力學智慧樹知到期末考試答案章節(jié)答案2024年長安大學
- GB/T 44143-2024科技人才評價規(guī)范
- 中國綠色算力發(fā)展研究報告(2024年)
- 環(huán)境管理與可持續(xù)發(fā)展管理制度
- 哈齊鐵路客運專線無砟軌道測量監(jiān)理實施細則
- DZ/T 0462.1-2023 礦產資源“三率”指標要求 第1部分:煤(正式版)
評論
0/150
提交評論