版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省大理州祥云縣重點達標名校中考一模數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a(chǎn)=b?cosA B.c=a?sinA C.a(chǎn)?cotA=b D.a(chǎn)?tanA=b2.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.3.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km4.已知一次函數(shù)y=ax﹣x﹣a+1(a為常數(shù)),則其函數(shù)圖象一定過象限()A.一、二 B.二、三 C.三、四 D.一、四5.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形6.實數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,下列結(jié)論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個7.如圖,以兩條直線l1,l2的交點坐標為解的方程組是()A. B. C. D.8.如圖,AB是的直徑,點C,D在上,若,則的度數(shù)為A. B. C. D.9.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙10.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)11.在平面直角坐標系中,點P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限12.如圖所示,若將△ABO繞點O順時針旋轉(zhuǎn)180°后得到△A1B1O,則A點的對應點A1點的坐標是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:cos245°-tan30°sin60°=______.14.計算tan260°﹣2sin30°﹣cos45°的結(jié)果為_____.15.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.16.方程的解是.17.如圖是我市某連續(xù)7天的最高氣溫與最低氣溫的變化圖,根據(jù)圖中信息可知,這7天中最大的日溫差是℃.18.若關(guān)于x的方程x2﹣8x+m=0有兩個相等的實數(shù)根,則m=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△OAB中,OA=OB,C為AB中點,以O(shè)為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.20.(6分)先化簡,再求值÷(x﹣),其中x=.21.(6分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.22.(8分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.23.(8分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉(zhuǎn),使PM交AB邊于點E,PN交AD邊于點F,當點E與點B重合時,停止旋轉(zhuǎn).在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當△AEB為直角三角形時的值.24.(10分)如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=-8x的圖象交于A、B兩點,與坐標軸交于M、N兩點.且點A的橫坐標和點B的縱坐標都是﹣1.求一次函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出y25.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.26.(12分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.27.(12分)(1)計算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項C正確,故選C.【點睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運用是解題的關(guān)鍵.2、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.3、B【解析】
正負數(shù)的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數(shù)在生活中的應用.注意用正負數(shù)表示的量必須是具有相反意義的量.4、D【解析】分析:根據(jù)一次函數(shù)的圖形與性質(zhì),由一次函數(shù)y=kx+b的系數(shù)k和b的符號,判斷所過的象限即可.詳解:∵y=ax﹣x﹣a+1(a為常數(shù)),∴y=(a-1)x-(a-1)當a-1>0時,即a>1,此時函數(shù)的圖像過一三四象限;當a-1<0時,即a<1,此時函數(shù)的圖像過一二四象限.故其函數(shù)的圖像一定過一四象限.故選D.點睛:此題主要考查了一次函數(shù)的圖像與性質(zhì),利用一次函數(shù)的圖像與性質(zhì)的關(guān)系判斷即可.一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質(zhì):當k>0,b>0時,圖像過一二三象限,y隨x增大而增大;當k>0,b<0時,圖像過一三四象限,y隨x增大而增大;當k<0,b>0時,圖像過一二四象限,y隨x增大而減??;當k<0,b<0,圖像過二三四象限,y隨x增大而減小.5、D【解析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;
B、四條邊相等的四邊形是菱形,故錯誤;
C、對角線相互平分的四邊形是平行四邊形,故錯誤;
D、對角線相等且相互平分的四邊形是矩形,正確;
故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關(guān)鍵是熟記四邊形的判定定理.6、B【解析】
根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關(guān)鍵.7、C【解析】
兩條直線的交點坐標應該是聯(lián)立兩個一次函數(shù)解析式所組成的方程組的解.因此本題需先根據(jù)兩直線經(jīng)過的點的坐標,用待定系數(shù)法求出兩直線的解析式.然后聯(lián)立兩函數(shù)的解析式可得出所求的方程組.【詳解】直線l1經(jīng)過(2,3)、(0,-1),易知其函數(shù)解析式為y=2x-1;直線l2經(jīng)過(2,3)、(0,1),易知其函數(shù)解析式為y=x+1;因此以兩條直線l1,l2的交點坐標為解的方程組是:.故選C.【點睛】本題主要考查了函數(shù)解析式與圖象的關(guān)系,滿足解析式的點就在函數(shù)的圖象上,在函數(shù)的圖象上的點,就一定滿足函數(shù)解析式.函數(shù)圖象交點坐標為兩函數(shù)解析式組成的方程組的解.8、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點睛:在同圓或等圓中,同弧或等弧所對的圓周角相等.9、B【解析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.10、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【點睛】本題考查了切線的性質(zhì),坐標與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標計算.11、A【解析】
分點P的橫坐標是正數(shù)和負數(shù)兩種情況討論求解.【詳解】①m-3>0,即m>3時,2-m<0,所以,點P(m-3,2-m)在第四象限;②m-3<0,即m<3時,2-m有可能大于0,也有可能小于0,點P(m-3,2-m)可以在第二或三象限,綜上所述,點P不可能在第一象限.故選A.【點睛】本題考查了各象限內(nèi)點的坐標的符號特征,記住各象限內(nèi)點的坐標的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、A【解析】
由題意可知,點A與點A1關(guān)于原點成中心對稱,根據(jù)圖象確定點A的坐標,即可求得點A1的坐標.【詳解】由題意可知,點A與點A1關(guān)于原點成中心對稱,∵點A的坐標是(﹣3,2),∴點A關(guān)于點O的對稱點A'點的坐標是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質(zhì)及關(guān)于原點對稱點的坐標的特征,熟知中心對稱的性質(zhì)及關(guān)于原點對稱點的坐標的特征是解決問題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0【解析】
直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.14、1【解析】
分別算三角函數(shù),再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數(shù)值,較基礎(chǔ).15、107°【解析】
過C作d∥a,得到a∥b∥d,構(gòu)造內(nèi)錯角,根據(jù)兩直線平行,內(nèi)錯角相等,及平角的定義,即可得到∠1的度數(shù).【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【點睛】本題考查了平行線的性質(zhì)以及正方形性質(zhì)的運用,解題時注意:兩直線平行,內(nèi)錯角相等.解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角.16、x=1.【解析】
根據(jù)解分式方程的步驟解答即可.【詳解】去分母得:2x=3x﹣1,解得:x=1,經(jīng)檢驗x=1是分式方程的解,故答案為x=1.【點睛】本題主要考查了解分式方程的步驟,牢牢掌握其步驟就解答此類問題的關(guān)鍵.17、11.【解析】試題解析:∵由折線統(tǒng)計圖可知,周一的日溫差=8℃+1℃=9℃;周二的日溫差=7℃+1℃=8℃;周三的日溫差=8℃+1℃=9℃;周四的日溫差=9℃;周五的日溫差=13℃﹣5℃=8℃;周六的日溫差=15℃﹣71℃=8℃;周日的日溫差=16℃﹣5℃=11℃,∴這7天中最大的日溫差是11℃.考點:1.有理數(shù)大小比較;2.有理數(shù)的減法.18、1【解析】
根據(jù)判別式的意義得到△=(﹣8)2﹣4m=0,然后解關(guān)于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關(guān)系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析;(3).【解析】
(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;
(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;
(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設(shè)BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.20、6【解析】【分析】括號內(nèi)先通分進行分式加減運算,然后再與括號外的分式進行乘除運算,化簡后代入x的值進行計算即可得.【詳解】原式===,當x=,原式==6.【點睛】本題考查了分式的化簡求值,根據(jù)所給的式子確定運算順序、熟練應用相關(guān)的運算法則是解題的關(guān)鍵.21、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標,進而求得D的坐標,即可求得DH的長度,令y=0,求得A,B的坐標,然后證得△ACO∽△EAH,根據(jù)對應邊成比例求得EH的長,進繼而求得DE的長;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設(shè)點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設(shè)點M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時,△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當KF′=KF″時,如圖3,點K在F′F″的垂直平分線上,所以K與B重合,坐標為(3,0),∴OK=3;2)當F′F″=F′K時,如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當F″F′=F″K時,如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.22、1【解析】
通過已知等式化簡得到未知量的關(guān)系,代入目標式子求值.【詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實數(shù),∴x=y=z.∴23、(1)①特殊情形:;②類比探究:是定值,理由見解析;(2)或【解析】
(1)證明,即可求解;(2)點E與點B重合時,四邊形EBFA為矩形,即可求解;(3)分時、時,兩種情況分別求解即可.【詳解】解:(1),,故答案為;(2)點E與點B重合時,四邊形EBFA為矩形,則為定值;(3)①當時,如圖3,過點E、F分別作直線BC的垂線交于點G,H,由(1)知:,,同理,.則,則;②當時,如圖4,,則,,則,,則,故或.【點睛】本題考查的圓知識的綜合運用,涉及到解直角三角形的基本知識,其中(3),要注意分類求解,避免遺漏.24、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】試題分析:(1)先根據(jù)反比例函數(shù)解析式求得兩個交點坐標,再根據(jù)待定系數(shù)法求得一次函數(shù)解析式;(1)將兩條坐標軸作為△AOB的分割線,求得△AOB的面積;(3)根據(jù)兩個函數(shù)圖象交點的坐標,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方時所有點的橫坐標的集合即可.試題解析:(1)設(shè)點A坐標為(﹣1,m),點B坐標為(n,﹣1)∵一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y1=﹣8x∴將A(﹣1,m)B(n,﹣1)代入反比例函數(shù)y1=﹣8x∴將A(﹣1,4)、B(4,﹣1)代入一次函數(shù)y1=kx+b,可得4=-2k+b-2=4k+b,解得∴一次函數(shù)的解析式為y1=﹣x+1;,(1)在一次函數(shù)y1=﹣x+1中,當x=0時,y=1,即N(0,1);當y=0時,x=1,即M(1,0)∴=12×1×1+12×1×1+1(3)根據(jù)圖象可得,當y1>y1時,x的取值范圍為:x<﹣1或0<x<4考點:1、一次函數(shù),1、反比例函數(shù),3、三角形的面積25、(1)證明見解析;(2)CE=1.【解析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.26、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《計算機病毒與木馬》課件
- 睪丸觸痛的臨床護理
- 丹毒絲菌病的臨床護理
- 堵奶的健康宣教
- 維生素營養(yǎng)障礙的健康宣教
- JJF(陜) 113-2024 低頻電磁場測量儀校準規(guī)范
- 函數(shù)復習課課件
- 新課程標準學習與落實計劃
- 數(shù)字在線服務相關(guān)項目投資計劃書范本
- 新型膜材料及其裝置行業(yè)相關(guān)投資計劃提議
- 新教材人教A版高中數(shù)學必修第一冊第四章測試題及答案
- GB/T 18266.3-2017體育場所等級的劃分第3部分:游泳場館星級劃分及評定
- 六年級上冊數(shù)學同步練習-1. 分數(shù)與整數(shù)相乘《分數(shù)乘整數(shù)的實際問題》蘇教版(含答案)1
- GB 5009.226-2016食品安全國家標準食品中過氧化氫殘留量的測定
- 反有組織犯罪法學習PPT
- 懸梁刺股-圖文
- 公司組織結(jié)構(gòu)圖Word模板
- CYYF城鎮(zhèn)污水廠全過程除臭工藝課件
- 課件:第三章 社會工作項目的策劃(《社會工作項目策劃與評估》課程)
- 國產(chǎn)保健食品靈芝孢子粉膠囊工藝(GMP使用)
- 新歷史小說1課件
評論
0/150
提交評論