版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
白銀市重點(diǎn)中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點(diǎn)中心對(duì)稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對(duì)稱 D.的最大值是2.若復(fù)數(shù),則()A. B. C. D.203.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.4.已知雙曲線的右焦點(diǎn)為,若雙曲線的一條漸近線的傾斜角為,且點(diǎn)到該漸近線的距離為,則雙曲線的實(shí)軸的長(zhǎng)為A. B.C. D.5.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.6.點(diǎn)在曲線上,過(guò)作軸垂線,設(shè)與曲線交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱點(diǎn)為曲線上的“水平黃金點(diǎn)”,則曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.37.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]8.設(shè)集合,則()A. B. C. D.9.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個(gè)坐位的寬度(),每個(gè)座位寬度為,估計(jì)彎管的長(zhǎng)度,下面的結(jié)果中最接近真實(shí)值的是()A. B. C. D.10.要排出高三某班一天中,語(yǔ)文、數(shù)學(xué)、英語(yǔ)各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.11.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為()A. B. C. D.12.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.14.已知實(shí)數(shù),滿足約束條件則的最大值為_(kāi)_______.15.設(shè)是公差不為0的等差數(shù)列的前項(xiàng)和,且,則______.16.在直角坐標(biāo)系中,某等腰直角三角形的兩個(gè)頂點(diǎn)坐標(biāo)分別為,函數(shù)的圖象經(jīng)過(guò)該三角形的三個(gè)頂點(diǎn),則的解析式為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.18.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).19.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,動(dòng)圓圓心的軌跡為,過(guò)作斜率為的直線與交于兩點(diǎn),過(guò)分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值.20.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)已知,點(diǎn)分別為橢圓的左、右頂點(diǎn),直線交于另一點(diǎn)為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),總使得為銳角,求直線斜率的取值范圍.22.(10分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點(diǎn)A,與交于點(diǎn)B,,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
通過(guò)三角函數(shù)的對(duì)稱性以及周期性,函數(shù)的最值判斷選項(xiàng)的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時(shí),或時(shí),即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查三角函數(shù)周期性和對(duì)稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.2、B【解析】
化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.3、D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.4、B【解析】
雙曲線的漸近線方程為,由題可知.設(shè)點(diǎn),則點(diǎn)到直線的距離為,解得,所以,解得,所以雙曲線的實(shí)軸的長(zhǎng)為,故選B.5、B【解析】
由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問(wèn)題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.7、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.8、C【解析】
解對(duì)數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對(duì)數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.9、B【解析】
為彎管,為6個(gè)座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對(duì)的圓心角,再利用弧長(zhǎng)公式即可求解.【詳解】如圖所示,為彎管,為6個(gè)座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長(zhǎng)所以是最接近的,其中選項(xiàng)A的長(zhǎng)度比還小,不可能,因此只能選B,260或者由,所以弧長(zhǎng).故選:B【點(diǎn)睛】本題考查了弧長(zhǎng)公式,需熟記公式,考查了學(xué)生的分析問(wèn)題的能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午;②語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午,要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語(yǔ)文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語(yǔ)課不加以區(qū)分,此時(shí),排法種數(shù)為種;②語(yǔ)文和數(shù)學(xué)都一個(gè)安排在上午,一個(gè)安排在下午.語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午,但節(jié)語(yǔ)文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語(yǔ)課也不加以區(qū)分,此時(shí),排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.11、C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計(jì)算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計(jì)算公式可得,故選:C.【點(diǎn)睛】本題主要考查了幾何概率的計(jì)算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.12、B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.14、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.15、18【解析】
先由,可得,再結(jié)合等差數(shù)列的前項(xiàng)和公式求解即可.【詳解】解:因?yàn)?,所以?故答案為:18.【點(diǎn)睛】本題考查了等差數(shù)列基本量的運(yùn)算,重點(diǎn)考查了等差數(shù)列的前項(xiàng)和公式,屬基礎(chǔ)題.16、【解析】
結(jié)合題意先畫(huà)出直角坐標(biāo)系,點(diǎn)出所有可能組成等腰直角三角形的點(diǎn),采用排除法最終可確定為點(diǎn),再由函數(shù)性質(zhì)進(jìn)一步求解參數(shù)即可【詳解】等腰直角三角形的第三個(gè)頂點(diǎn)可能的位置如下圖中的點(diǎn),其中點(diǎn)與已有的兩個(gè)頂點(diǎn)橫坐標(biāo)重復(fù),舍去;若為點(diǎn)則點(diǎn)與點(diǎn)的中間位置的點(diǎn)的縱坐標(biāo)必然大于或小于,不可能為,因此點(diǎn)也舍去,只有點(diǎn)滿足題意.此時(shí)點(diǎn)為最大值點(diǎn),所以,又,則,所以點(diǎn),之間的圖像單調(diào),將,代入的表達(dá)式有由知,因此.故答案為:【點(diǎn)睛】本題考查由三角函數(shù)圖像求解解析式,數(shù)形結(jié)合思想,屬于中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計(jì)算即可;(2)利用錯(cuò)位相減法計(jì)算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因?yàn)?,所以,即,解得,或(舍去?所以.(2),,所以,所以.(3)由(1)可得,,所以.因?yàn)槭菙?shù)列或中的一項(xiàng),所以,所以,因?yàn)椋?,又,則或.當(dāng)時(shí),有,即,令.則.當(dāng)時(shí),;當(dāng)時(shí),,即.由,知無(wú)整數(shù)解.當(dāng)時(shí),有,即存在使得是數(shù)列中的第2項(xiàng),故存在正整數(shù),使得是數(shù)列中的項(xiàng).【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,數(shù)列中的存在性問(wèn)題,是一道較為綜合的題.18、(1);(2).【解析】
(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡(jiǎn)求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長(zhǎng).【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.當(dāng),(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長(zhǎng)為.【點(diǎn)睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應(yīng)用正弦定理將邊化角,屬綜合性基礎(chǔ)題.19、(1)見(jiàn)解析(2)最小值為1.【解析】
(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫(xiě)出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動(dòng)圓過(guò)定點(diǎn),且與直線相切,∴動(dòng)圓圓心到定點(diǎn)和定直線的距離相等,∴動(dòng)圓圓心的軌跡是以為焦點(diǎn)的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時(shí)取等號(hào),∴四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動(dòng)點(diǎn)軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計(jì)算,考查運(yùn)算求解能力,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)等比中項(xiàng)性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項(xiàng)公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式的求解、分組求和法求解數(shù)列的前項(xiàng)和的問(wèn)題;關(guān)鍵是能夠根據(jù)通項(xiàng)公式證得數(shù)列為等比數(shù)列,進(jìn)而采用分組求和法,結(jié)合等差和等比數(shù)列求和公式求得結(jié)果.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點(diǎn)坐標(biāo),即可求得橢圓的方程;(Ⅱ)設(shè)直線,代入橢圓方程,由韋達(dá)定理,由,由為銳角,則,由向量數(shù)量積的坐標(biāo)公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設(shè)由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設(shè)方程為設(shè)由得由直線與橢圓有兩
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2018春季江南大學(xué)現(xiàn)代遠(yuǎn)程教育會(huì)計(jì)貨幣銀行學(xué)
- 2024年溫宿縣民族醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 七下數(shù)學(xué)活動(dòng)
- 2024年度中小校黨支部黨風(fēng)廉政建設(shè)調(diào)研報(bào)告
- 同位語(yǔ)從句與定語(yǔ)從句的異同及區(qū)分方法(拓展)(說(shuō)課稿)-2023-2024學(xué)年外研版英語(yǔ)九年級(jí)下冊(cè)
- 2024年江華瑤族自治縣民族中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 寫(xiě)字指導(dǎo)培訓(xùn)
- 2024年06月興業(yè)銀行龍巖分行科技人才社會(huì)招考筆試歷年參考題庫(kù)附帶答案詳解
- 2024樹(shù)木買(mǎi)賣(mài)簡(jiǎn)單合同
- 2025年魯教五四新版選修1歷史下冊(cè)階段測(cè)試試卷
- 2025年1月八省聯(lián)考河南新高考物理試卷真題(含答案詳解)
- 物業(yè)管理服務(wù)人員配備及崗位職責(zé)
- 建設(shè)工程檢試驗(yàn)工作管理實(shí)施指引
- 鄭州2024年河南鄭州市惠濟(jì)區(qū)事業(yè)單位80人筆試歷年參考題庫(kù)頻考點(diǎn)試題附帶答案詳解
- 深靜脈血栓的手術(shù)預(yù)防
- 【9道期末】安徽省合肥市廬陽(yáng)區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末道德與法治試題
- 腹腔鏡全胃切除手術(shù)配合
- 2024-2030年中國(guó)非物質(zhì)文化遺產(chǎn)市場(chǎng)前景調(diào)研及投資風(fēng)險(xiǎn)分析報(bào)告
- 匯川技術(shù)在線測(cè)評(píng)題及答案
- 酒店員工人事制度培訓(xùn)
- 2023年山西省公務(wù)員錄用考試《行測(cè)》真題及答案解析
評(píng)論
0/150
提交評(píng)論