北京市東城區(qū)東直門中學2025屆高考壓軸卷數(shù)學試卷含解析_第1頁
北京市東城區(qū)東直門中學2025屆高考壓軸卷數(shù)學試卷含解析_第2頁
北京市東城區(qū)東直門中學2025屆高考壓軸卷數(shù)學試卷含解析_第3頁
北京市東城區(qū)東直門中學2025屆高考壓軸卷數(shù)學試卷含解析_第4頁
北京市東城區(qū)東直門中學2025屆高考壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

北京市東城區(qū)東直門中學2025屆高考壓軸卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種2.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.3.復數(shù)(為虛數(shù)單位),則的共軛復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.35.()A. B. C. D.6.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.7.已知函數(shù)滿足=1,則等于()A.- B. C.- D.8.在復平面內(nèi),復數(shù)(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導出復數(shù)乘方公式:,已知,則()A. B.4 C. D.169.函數(shù)的大致圖像為()A. B.C. D.10.如下的程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.1511.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18012.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β二、填空題:本題共4小題,每小題5分,共20分。13.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.14.若,i為虛數(shù)單位,則正實數(shù)的值為______.15.設是公差不為0的等差數(shù)列的前項和,且,則______.16.設,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.18.(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設,求證:.19.(12分)在中,角所對的邊分別是,且.(1)求角的大小;(2)若,求邊長.20.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.21.(12分)已知三點在拋物線上.(Ⅰ)當點的坐標為時,若直線過點,求此時直線與直線的斜率之積;(Ⅱ)當,且時,求面積的最小值.22.(10分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用分步計數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題2、D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.3、C【解析】

由復數(shù)除法求出,寫出共軛復數(shù),寫出共軛復數(shù)對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數(shù)的除法運算,共軛復數(shù)的概念,復數(shù)的幾何意義.掌握復數(shù)除法法則是解題關鍵.4、C【解析】

結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.5、B【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.6、B【解析】

根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.7、C【解析】

設的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數(shù)的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.8、D【解析】

根據(jù)復數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數(shù)的新定義題目、同時考查了復數(shù)模的求法,解題的關鍵是理解棣莫弗定理,將復數(shù)化為棣莫弗定理形式,屬于基礎題.9、D【解析】

通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.10、A【解析】

根據(jù)題意可知最后計算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結(jié)果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數(shù)的最大公約數(shù),難度較易.11、A【解析】

因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.12、B【解析】

根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質(zhì)判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.14、【解析】

利用復數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎題.15、18【解析】

先由,可得,再結(jié)合等差數(shù)列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數(shù)列基本量的運算,重點考查了等差數(shù)列的前項和公式,屬基礎題.16、121【解析】

在所給的等式中令,,令,可得2個等式,再根據(jù)所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)當時,在上是減函數(shù);當時,在上是增函數(shù);(3)證明見解析.【解析】

(1)當時,,求得其導函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導函數(shù),并得出導函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當時,,,由(2)得的單調(diào)區(qū)間,以當方程有兩個不相等的實數(shù)根,不妨設,且有,,構(gòu)造函數(shù),分析其導函數(shù)的正負得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數(shù),在上是增函數(shù);(3)當時,,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數(shù)根,不妨設,且有,,構(gòu)造函數(shù),則,當時,所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點睛】本題考查運用導函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關鍵在于構(gòu)造適當?shù)暮瘮?shù),得出其導函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.18、(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】

(1)求出導函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導數(shù),由導數(shù)的正負確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對求導,得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當時,,即.令,得,即.因此,當時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當時,,即.因此,即.令,得,即.當時,.因為,所以,所以.所以,當時,.所以,當時,成立.綜上所述,當時,成立.【點睛】本題考查導數(shù)的幾何意義,考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關系:,.這是最關鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.19、(1);(2).【解析】

(1)把代入已知條件,得到關于的方程,得到的值,從而得到的值.(2)由(1)中得到的的值和已知條件,求出,再根據(jù)正弦定理求出邊長.【詳解】(1)因為,,所以,,所以,即.因為,所以,因為,所以.(2).在中,由正弦定理得,所以,解得.【點睛】本題考查三角函數(shù)公式的運用,正弦定理解三角形,屬于簡單題.20、(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結(jié)合基本不等式求出的取值范圍,再結(jié)合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時也考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論