版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
三省三校(貴陽一中,云師大附中2025屆高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立2.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.3.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.4.設(shè)集合則()A. B. C. D.5.若函數(shù)在時(shí)取得最小值,則()A. B. C. D.6.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.7.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.8.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.29.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.710.已知的值域?yàn)?,?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.911.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,程序運(yùn)行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.812.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,,則向量在的夾角為______.14.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點(diǎn)F,若,則____.15.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.16.雙曲線的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點(diǎn),動圓經(jīng)過點(diǎn)且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),且直線與軸交于點(diǎn),設(shè),,求證:為定值.18.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.19.(12分)已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請說明理由.20.(12分)已知實(shí)數(shù)x,y,z滿足,證明:.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點(diǎn),與軸交于點(diǎn),求.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.2、B【解析】
先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對稱點(diǎn)的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.3、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.4、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡單題.5、D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時(shí)的值.【詳解】解:,其中,,,故當(dāng),即時(shí),函數(shù)取最小值,所以,故選:D【點(diǎn)睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.6、D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.7、C【解析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),取得最大值,最大值為.故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.8、D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.9、C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.10、A【解析】
利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號,∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.11、C【解析】
根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運(yùn)行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運(yùn)行結(jié)果,屬于基礎(chǔ)題.12、B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把平方利用數(shù)量積的運(yùn)算化簡即得解.【詳解】因?yàn)?,,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.14、【解析】
過點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.15、10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.16、2【解析】三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計(jì)算,并代入,可得結(jié)論.【詳解】(1)設(shè)動圓圓心,由拋物線定義知:點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,設(shè)其方程為,則,解得.∴曲線的方程為;(2)證明:設(shè)直線方程為,,則,設(shè),由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點(diǎn)睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設(shè)而不求的思想方法,即設(shè)交點(diǎn)坐標(biāo),設(shè)直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應(yīng)用韋達(dá)定理得,,代入題中其他條件所求式子中化簡變形.18、(1),(2)【解析】
(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因?yàn)槌傻炔顢?shù)列,所以而,.19、(1);(2)存在,且方程為或.【解析】
(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當(dāng)斜率不存在時(shí),以為直徑的圓顯然不經(jīng)過橢圓的左頂點(diǎn),所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標(biāo)分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點(diǎn),則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn),直線的方程為或.【點(diǎn)睛】本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問題,弦長問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.20、見解析【解析】
已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點(diǎn)睛】本題考查柯西不等式的應(yīng)用,屬于基礎(chǔ)題.21、(1)(x-1)2+y2=4,直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.【解析】
(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.【詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標(biāo)方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.22、(1),(2)存在,【解析】
(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標(biāo)方程,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共事業(yè)銷售人員工作總結(jié)
- 陜西省渭南市富平縣2023-2024學(xué)年九年級上期末化學(xué)模擬試卷
- 禮品行業(yè)前臺工作總結(jié)
- 煙酒店居民樓小區(qū)保安工作要點(diǎn)
- IT行業(yè)程序員工作總結(jié)
- 科技研發(fā)合同三篇
- 2022年河南省鶴壁市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年江西省贛州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年浙江省衢州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2021年浙江省金華市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 小學(xué)英語語法復(fù)習(xí)課件1
- (高清版)TDT 1037-2013 土地整治重大項(xiàng)目可行性研究報(bào)告編制規(guī)程
- 中國旅游集團(tuán)2024年校園招聘筆試參考題庫附帶答案詳解
- 導(dǎo)管室進(jìn)修匯報(bào)課件
- T-CEPPC 13-2023 電網(wǎng)區(qū)域電碳因子和電力碳排放量核算規(guī)范
- 《萬以內(nèi)數(shù)的認(rèn)識》大單元整體設(shè)計(jì)
- 監(jiān)控系統(tǒng)調(diào)試檢驗(yàn)批質(zhì)量驗(yàn)收記錄(新表)
- 24.教育規(guī)劃綱要(2024-2024)
- 山東省棗莊市滕州市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 我的家鄉(xiāng)隴南
- 2023-2024學(xué)年蘇州市八年級語文上學(xué)期期末考試卷附答案解析
評論
0/150
提交評論