黔西南民族職業(yè)技術學院《機器學習基礎實踐》2023-2024學年第一學期期末試卷_第1頁
黔西南民族職業(yè)技術學院《機器學習基礎實踐》2023-2024學年第一學期期末試卷_第2頁
黔西南民族職業(yè)技術學院《機器學習基礎實踐》2023-2024學年第一學期期末試卷_第3頁
黔西南民族職業(yè)技術學院《機器學習基礎實踐》2023-2024學年第一學期期末試卷_第4頁
黔西南民族職業(yè)技術學院《機器學習基礎實踐》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁黔西南民族職業(yè)技術學院《機器學習基礎實踐》

2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、機器學習在圖像識別領域也取得了巨大的成功。以下關于機器學習在圖像識別中的說法中,錯誤的是:機器學習可以用于圖像分類、目標檢測、圖像分割等任務。常見的圖像識別算法有卷積神經(jīng)網(wǎng)絡、支持向量機等。那么,下列關于機器學習在圖像識別中的說法錯誤的是()A.卷積神經(jīng)網(wǎng)絡通過卷積層和池化層自動學習圖像的特征表示B.支持向量機在圖像識別中的性能通常不如卷積神經(jīng)網(wǎng)絡C.圖像識別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關系不大D.機器學習在圖像識別中的應用還面臨著一些挑戰(zhàn),如小樣本學習、對抗攻擊等2、在一個文本生成任務中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡的方法,如TransformerD.以上都不是3、在一個圖像分類任務中,如果需要快速進行模型的訓練和預測,以下哪種輕量級模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG4、在一個強化學習問題中,智能體需要在環(huán)境中通過不斷嘗試和學習來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法5、在一個分類問題中,如果數(shù)據(jù)集中存在噪聲和錯誤標簽,以下哪種模型可能對這類噪聲具有一定的魯棒性?()A.集成學習模型B.深度學習模型C.支持向量機D.決策樹6、在一個氣候預測的研究中,需要根據(jù)歷史的氣象數(shù)據(jù),包括溫度、濕度、氣壓等,來預測未來一段時間的天氣狀況。數(shù)據(jù)具有季節(jié)性、周期性和長期趨勢等特征。以下哪種預測方法可能是最有效的?()A.簡單的線性時間序列模型,如自回歸移動平均(ARMA)模型,適用于平穩(wěn)數(shù)據(jù),但對復雜模式的捕捉能力有限B.季節(jié)性自回歸整合移動平均(SARIMA)模型,考慮了季節(jié)性因素,但對于非線性和突變的情況處理能力不足C.基于深度學習的長短期記憶網(wǎng)絡(LSTM)與門控循環(huán)單元(GRU),能夠處理長序列和復雜的非線性關系,但需要大量數(shù)據(jù)和計算資源D.結(jié)合多種傳統(tǒng)時間序列模型和機器學習算法的集成方法,綜合各自的優(yōu)勢,但模型復雜度和調(diào)參難度較高7、假設正在進行一項關于客戶購買行為預測的研究。我們擁有大量的客戶數(shù)據(jù),包括個人信息、購買歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價值的特征,以下哪種方法通常被廣泛應用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨立成分分析(ICA)8、在機器學習中,監(jiān)督學習是一種常見的學習方式。假設我們有一個數(shù)據(jù)集,包含了房屋的面積、房間數(shù)量、地理位置等特征,以及對應的房價。如果我們想要使用監(jiān)督學習算法來預測新房屋的價格,以下哪種算法可能是最合適的()A.K-Means聚類算法B.決策樹算法C.主成分分析(PCA)D.獨立成分分析(ICA)9、假設正在進行一個異常檢測任務,數(shù)據(jù)具有高維度和復雜的分布。以下哪種技術可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術都可以10、在特征工程中,獨熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是11、假設正在進行一個圖像生成任務,例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對抗網(wǎng)絡(GAN)C.自回歸模型D.以上模型都常用于圖像生成12、某研究團隊正在開發(fā)一個語音識別系統(tǒng),需要對語音信號進行特征提取。以下哪種特征在語音識別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預測編碼(LPC)C.感知線性預測(PLP)D.以上特征都常用13、在進行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關特征B.對特征進行主成分分析C.對特征進行標準化D.以上都可以14、在一個異常檢測的任務中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進行組合15、某研究需要對一個大型數(shù)據(jù)集進行降維,同時希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機鄰域嵌入(t-SNE)D.自編碼器16、在機器學習中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝炞C技術來評估不同模型和超參數(shù)組合的性能。假設有一個分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗證,以下關于K的選擇,哪一項是不太合理的?()A.K=5,平衡計算成本和評估準確性B.K=2,快速得到初步的評估結(jié)果C.K=10,提供更可靠的評估D.K=n(n為樣本數(shù)量),確保每個樣本都用于驗證一次17、在機器學習中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡C.隨機森林D.支持向量機18、在進行機器學習模型評估時,我們經(jīng)常使用混淆矩陣來分析模型的性能。假設一個二分類問題的混淆矩陣如下:()預測為正類預測為負類實際為正類8020實際為負類1090那么該模型的準確率是多少()A.80%B.90%C.70%D.85%19、某機器學習項目需要對文本進行情感分類,同時考慮文本的上下文信息和語義關系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(RNN)與注意力機制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(CNN)與長短時記憶網(wǎng)絡(LSTM)的融合C.預訓練語言模型(如BERT)微調(diào)D.以上模型都有可能20、在一個多分類問題中,如果類別之間存在層次關系,以下哪種分類方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類B.一對一分類C.一對多分類D.以上方法都可以二、簡答題(本大題共3個小題,共15分)1、(本題5分)什么是強化學習?它與監(jiān)督學習和無監(jiān)督學習有何不同?2、(本題5分)談談在天文學中,機器學習的應用。3、(本題5分)解釋機器學習在能源管理中的優(yōu)化策略。三、應用題(本大題共5個小題,共25分)1、(本題5分)使用CNN對人臉表情進行識別。2、(本題5分)通過神經(jīng)網(wǎng)絡模型對腦電圖(EEG)數(shù)據(jù)進行分析。3、(本題5分)借助美容美發(fā)行業(yè)數(shù)據(jù)為客戶提供個性化造型建議。4、(本題5分)借助糖尿病相關數(shù)據(jù)研究疾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論