版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣西玉林市高考考前模擬數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),則()A. B. C. D.22.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.3.已知函數(shù)是上的偶函數(shù),且當時,函數(shù)是單調遞減函數(shù),則,,的大小關系是()A. B.C. D.4.已知,,則等于().A. B. C. D.5.已知,,則的大小關系為()A. B. C. D.6.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.8.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.9.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④10.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.411.函數(shù)的一個單調遞增區(qū)間是()A. B. C. D.12.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.14.已知等差數(shù)列的前n項和為Sn,若,則____.15.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則16.有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則對應的排法有______種;______;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(shù)()的檢測數(shù)據(jù),結果統(tǒng)計如下:空氣質量優(yōu)良輕度污染中度污染重度污染嚴重污染天數(shù)61418272510(1)從空氣質量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經濟損失(單位:元)與空氣質量指數(shù)的關系式為,試估計該企業(yè)一個月(按30天計算)的經濟損失的數(shù)學期望.18.(12分)已知函數(shù).(1)討論的單調性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.19.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.20.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.21.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)復數(shù)模的性質即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質,屬于容易題.2、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.3、D【解析】
利用對數(shù)函數(shù)的單調性可得,再根據(jù)的單調性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數(shù)是單調遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調性以及對數(shù)函數(shù)的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關系,本題屬于中檔題.4、B【解析】
由已知條件利用誘導公式得,再利用三角函數(shù)的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關系以及三角函數(shù)的符號與位置關系,屬于基礎題.5、D【解析】
由指數(shù)函數(shù)的圖像與性質易得最小,利用作差法,結合對數(shù)換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質可知,由對數(shù)函數(shù)的圖像與性質可知,,所以最??;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.6、D【解析】
先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.7、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結合輸出結果,即可確定判斷條件,屬于??碱}型.8、A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.9、D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.10、A【解析】
采用數(shù)形結合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.11、D【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調區(qū)間的求法,求得的單調區(qū)間,由此確定正確選項.【詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想,應用意識.12、D【解析】
由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.14、【解析】
由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數(shù)列前n項和的性質,相對不難.15、-5【解析】
畫出x,y滿足的可行域,當目標函數(shù)z=x-2y經過點A時,z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當目標函數(shù)z=x-2y經過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質是把代數(shù)問題幾何化,即數(shù)形結合思想。需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。16、36;1.【解析】
的可能取值為0,1,2,3,對應的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則的可能取值為0,1,2,3,對應的排法有:.∴對應的排法有36種;,,,,∴故答案為:36;1.【點睛】本題考查了排列、組合的應用,離散型隨機變量的分布列以及數(shù)學期望,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)9060元【解析】
(1)根據(jù)古典概型概率公式和組合數(shù)的計算可得所求概率;(2)任選一天,設該天的經濟損失為元,分別求出,,,進而求得數(shù)學期望,據(jù)此得出該企業(yè)一個月經濟損失的數(shù)學期望.【詳解】解:(1)設為選取的3天中空氣質量為優(yōu)的天數(shù),則.(2)任選一天,設該天的經濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個月的經濟損失的數(shù)學期望為(元).【點睛】本題考查古典概型概率公式和組合數(shù)的計算及數(shù)學期望,屬于基礎題.18、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導求出,對分類討論,求出的解,即可得出結論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉化為,恒成立,設,,只需,根據(jù)的單調性,即可求解.【詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調遞減,所以所以在上單調遞減,,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導數(shù)的綜合應用,涉及函數(shù)的單調性、導數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.19、(1);(2).【解析】
(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.又可求,得,,所以.【點睛】本題考查橢圓標準方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關鍵在于利用韋達定理進行消參,屬于中檔題20、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)養(yǎng)生基礎知識
- (2024)文化旅游區(qū)建設項目可行性研究報告申請報告(一)
- 2022-2023學年天津市培杰中學高三(上)期末語文試卷
- 《社會工作的訪談法》課件
- 2023年水分保持劑項目籌資方案
- 2023年鎘、鉍相關常用有色金屬項目籌資方案
- 【CPA金投賞】2025播客營銷白皮書
- 工業(yè)機器人技術與應用模擬練習題含答案
- 養(yǎng)老院老人生活娛樂活動組織服務質量管理制度
- 22 偉大的悲劇 教案初中語文課件
- 腎內科疑難病例討論慢性腎臟病5期
- 《登泰山記》優(yōu)秀課件
- 創(chuàng)業(yè)基礎-中南財經政法大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 第八章-航空器受非法干擾的應急管理
- 2023年四川省成都市溫江區(qū)四年級數(shù)學第二學期期末調研試題含解析
- 《康復醫(yī)學》教學課件手外傷的康復
- 大型活動秩序維護預案5篇,活動現(xiàn)場秩序維護方案
- ERP基本培訓教材
- 基建試題及答案
- 甲狀旁腺功能亢進疑難病例討論
- 四川農業(yè)大學生物化學(本科)期末考試高分題庫全集含答案-2023修改整理
評論
0/150
提交評論