版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京五中2025屆高考適應性考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合的子集的個數(shù)是()A.2 B.3 C.4 D.82.如下的程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.153.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.4.已知集合,則()A. B. C. D.5.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內任取一點,則該點落在區(qū)域的概率為()A. B. C. D.6.的展開式中的系數(shù)為()A. B. C. D.7.已知傾斜角為的直線與直線垂直,則()A. B. C. D.8.大衍數(shù)列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.9.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.310.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.11.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.12.已知集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在和上均單調遞增,則實數(shù)的取值范圍為________.14.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.15.設變量,,滿足約束條件,則目標函數(shù)的最小值是______.16.的展開式中,x5的系數(shù)是_________.(用數(shù)字填寫答案)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數(shù)a的取值范圍;(3)證明:對一切,都有成立.18.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.19.(12分)已知的三個內角所對的邊分別為,向量,,且.(1)求角的大??;(2)若,求的值20.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.21.(12分)在直角坐標系中,圓C的參數(shù)方程(為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.22.(10分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.2、A【解析】
根據(jù)題意可知最后計算的結果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數(shù)的最大公約數(shù),難度較易.3、D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.4、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.5、C【解析】
據(jù)題意可知,是與面積有關的幾何概率,要求落在區(qū)域內的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區(qū)域的面積.6、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數(shù)、整數(shù)冪的運算等有關方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.7、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.8、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.9、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.10、D【解析】
根據(jù)題意,求得的坐標,根據(jù)點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標,屬中檔題.11、C【解析】
建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數(shù)方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.12、C【解析】
由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
化簡函數(shù),求出在上的單調遞增區(qū)間,然后根據(jù)在和上均單調遞增,列出不等式求解即可.【詳解】由知,當時,在和上單調遞增,在和上均單調遞增,,
,
的取值范圍為:.
故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質,關鍵是根據(jù)函數(shù)的單調性列出關于m的方程組,屬中檔題.14、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數(shù)S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數(shù)求面積的最值問題,意在考查學生的計算能力和應用能力.15、7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經(jīng)過點A時,目標函數(shù)z達到最小值∴z最小值=F(2,1)=716、-189【解析】由二項式定理得,令r=5得x5的系數(shù)是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)((3)見證明【解析】
(1)先求函數(shù)導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律確定函數(shù)單調性,最后根據(jù)函數(shù)單調性確定最小值取法;(2)先分離不等式,轉化為對應函數(shù)最值問題,利用導數(shù)求對應函數(shù)最值即得結果;(3)構造兩個函數(shù),再利用兩函數(shù)最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數(shù)f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數(shù)f(x)在(0,1)上單調遞減;函數(shù)f(x)在(1,+)上單調遞增;即,即實數(shù)a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數(shù)在(0,1)上單調遞增;函數(shù)在(1,+)上單調遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立.【點睛】對于求不等式成立時的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個區(qū)間上具體的函數(shù),這樣就把問題轉化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.但要注意分離參數(shù)法不是萬能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復雜,性質很難研究,就不要使用分離參數(shù)法.18、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據(jù)平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面內,所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.19、(1)(2)【解析】
利用平面向量數(shù)量積的坐標表示和二倍角的余弦公式得到關于的方程,解方程即可求解;由知,在中利用余弦定理得到關于的方程,與方程聯(lián)立求出,進而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得,,又因為,所以,解得或,∵,∴.在中,由余弦定理得,即①又因為,把代入①整理得,,解得,,所以為等邊三角形,,∴,即.【點睛】本題考查利用平面向量數(shù)量積的坐標表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關鍵;屬于中檔題、??碱}型.20、(1);(2).【解析】
(1)分類討論,,,即可得出結果;(2)先由題意,將問題轉化為即可,再求出,的最小值,解不等式即可得出結果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結合,所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質即可,屬于??碱}型.21、(1);(2)2【解析】
(1)首先利用對圓C的參數(shù)方程(φ為參數(shù))進行消參數(shù)運算,化為普通方程,再根據(jù)普通方程化極坐標方程的公式得到圓C的極坐標方程.(2)設,聯(lián)立直線與圓的極坐標方程,解得;設,聯(lián)立直線與直線的極坐標方程,解得,可得.【詳解】(1)圓C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)學之眼模板
- 醫(yī)藥生物行業(yè)安全生產(chǎn)工作總結
- 舞蹈秘境:身心之旅
- 幼兒園環(huán)境教育的研究與實踐計劃
- 《知識產(chǎn)權法總論》課件
- 舞臺設計工程師工作總結
- 2024員工三級安全培訓考試題及參考答案【A卷】
- 2023年-2024年項目部安全管理人員安全培訓考試題及答案原創(chuàng)題
- 員工因病辭職報告-15篇
- 歷史學應用研究報告
- YS/T 1149.2-2016鋅精礦焙砂化學分析方法第2部分:酸溶鋅量的測定Na2EDTA滴定法
- GB/T 11017.1-2002額定電壓110kV交聯(lián)聚乙烯絕緣電力電纜及其附件第1部分:試驗方法和要求
- 原料藥FDA現(xiàn)場GMP符合性要求與檢查實踐課件
- 科技創(chuàng)新社團活動教案課程
- 氨堿法純堿生產(chǎn)工藝概述
- 基礎化工行業(yè)深度:電解液新型鋰鹽材料之雙氟磺酰亞胺鋰(LiFSI)市場潛力可觀新型鋰鹽LiFSI國產(chǎn)化進程加速
- 年產(chǎn)10000噸一次性自然降解環(huán)保紙漿模塑餐具自動化生產(chǎn)線技改項目環(huán)境影響報告表
- 實戰(zhàn)銷售培訓講座(共98頁).ppt
- 測控電路第7章信號細分與辨向電路
- 哈爾濱工業(yè)大學信紙模版
- 氨的飽和蒸汽壓表
評論
0/150
提交評論