




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省六市2025屆高三適應性調(diào)研考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.42.已知函數(shù),若關于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.83.設函數(shù)(,)是上的奇函數(shù),若的圖象關于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.4.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.5.已知集合,集合,則().A. B.C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.638.新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一9.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.10.已知滿足,則的取值范圍為()A. B. C. D.11.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則12.已知集合,定義集合,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足約束條件,則的最小值為______.14.設,分別是橢圓C:()的左、右焦點,直線l過交橢圓C于A,B兩點,交y軸于E點,若滿足,且,則橢圓C的離心率為______.15.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點,則的取值范圍是__________.16.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.18.(12分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.19.(12分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質(zhì),健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學期望為依據(jù),預測此次促銷活動后健身館每天的營業(yè)額.20.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結果統(tǒng)計如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學期望.21.(12分)在△ABC中,分別為三個內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.22.(10分)已知拋物線,過點的直線交拋物線于兩點,坐標原點為,.(1)求拋物線的方程;(2)當以為直徑的圓與軸相切時,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
采用數(shù)形結合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.2、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結合即可得出.【詳解】解:函數(shù),如圖所示當時,,由于關于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數(shù)解當時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.3、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.4、D【解析】
以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.5、A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.6、A【解析】
觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。7、B【解析】
根據(jù)程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.8、C【解析】
通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.9、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.10、C【解析】
設,則的幾何意義為點到點的斜率,利用數(shù)形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關鍵.對于直線斜率要注意斜率不存在的直線是否存在.11、D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.12、C【解析】
根據(jù)定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出滿足約束條件的可行域,將目標函數(shù)視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯(lián)立,解得點B坐標,即可求得答案.【詳解】作出滿足約束條件的可行域,該目標函數(shù)視為可行解與點的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點睛】本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.14、【解析】
采用數(shù)形結合,計算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結果.【詳解】如圖由,所以由,所以又,則所以所以化簡可得:則故答案為:【點睛】本題考查橢圓的定義以及余弦定理的使用,關鍵在于根據(jù)角度求出線段的長度,考查分析能力以及計算能力,屬中檔題.15、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內(nèi)到外依次求值.(2)當給出函數(shù)值求自變量的值時,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.16、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當?shù)男甭蕿闀r和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當?shù)男甭蕿闀r,,,于是,到的距離為,直線與圓相切.當?shù)男甭什粸闀r,設的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當且僅當?shù)忍柍闪?,所以面積的最小值為1.【點睛】本題主要考查直線與橢圓的位置關系、直線與圓的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉化思想,屬于難題.18、(1)(2)當時,;當時,.【解析】
(1)利用數(shù)列與的關系,求得;(2)由(1)可得:,,算出公比,利用等比數(shù)列的前項和公式求出.【詳解】(1)當時,,當時,,因為適合上式,所以.(2)由(1)得,,設等比數(shù)列的公比為,則,解得,當時,,當時,.【點睛】本題主要考查數(shù)列與的關系、等比數(shù)列的通項公式、前項和公式等基礎知識,考查運算求解能力..19、(1)見解析,40元(2)6000元【解析】
(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(jù)(1)結果求均值.【詳解】解:(1)由題設知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.20、(1)(2)9060元【解析】
(1)根據(jù)古典概型概率公式和組合數(shù)的計算可得所求概率;(2)任選一天,設該天的經(jīng)濟損失為元,分別求出,,,進而求得數(shù)學期望,據(jù)此得出該企業(yè)一個月經(jīng)濟損失的數(shù)學期望.【詳解】解:(1)設為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則.(2)任選一天,設該天的經(jīng)濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個月的經(jīng)濟損失的數(shù)學期望為(元).【點睛】本題考查古典概型概率公式和組合數(shù)的計算及數(shù)學期望,屬于基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人造革的環(huán)保標準與認證流程考核試卷
- 某研究院財務規(guī)劃管理制度及流程
- 輔警轉正工作總結
- 煙臺市重點中學2025屆高三三調(diào)(5月)數(shù)學試題試卷
- 桌子創(chuàng)意美術課件
- 2025年份第一季度離婚協(xié)議中房產(chǎn)增值部分分割細則
- 《社會工作倫理》課件:實踐原則與案例分析
- 2025年4月份離婚協(xié)議中危險病原體保管責任約定
- 標準個人借款擔保合同范例二零二五年
- 全新機房搬遷協(xié)議合同
- 2025年04月國家廣播電視總局直屬事業(yè)單位公開招聘310人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 地鐵施工監(jiān)測監(jiān)理細則
- 呼吸機的使用操作流程
- “雙碳”目標下數(shù)智化供應鏈運作管理策略研究
- 住建局安全管理匯報
- 粉體輸送設備安裝工程施工合同
- 空調(diào)定期清洗消毒制度消毒
- 2024-2025學年下學期高二政治選必修2第三單元B卷
- 重慶市拔尖強基聯(lián)盟2024-2025學年高三下學期3月聯(lián)合考試歷史試題(含答案)
- 果園種植管理合作合同范本
- 居室空間設計 課件 項目四 起居室空間設計
評論
0/150
提交評論