臨夏現(xiàn)代職業(yè)學院《廣告攝影》2023-2024學年第一學期期末試卷_第1頁
臨夏現(xiàn)代職業(yè)學院《廣告攝影》2023-2024學年第一學期期末試卷_第2頁
臨夏現(xiàn)代職業(yè)學院《廣告攝影》2023-2024學年第一學期期末試卷_第3頁
臨夏現(xiàn)代職業(yè)學院《廣告攝影》2023-2024學年第一學期期末試卷_第4頁
臨夏現(xiàn)代職業(yè)學院《廣告攝影》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁臨夏現(xiàn)代職業(yè)學院

《廣告攝影》2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像去噪任務中,去除圖像中的噪聲。假設要處理一張被噪聲嚴重污染的天文圖像,以下關于圖像去噪方法的描述,哪一項是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會模糊圖像細節(jié)B.基于小波變換的方法能夠在去除噪聲的同時較好地保留圖像的邊緣和細節(jié)C.深度學習方法通過學習噪聲和干凈圖像之間的映射關系,實現(xiàn)有效的去噪D.圖像去噪可以完全恢復被噪聲破壞的原始圖像信息,沒有任何損失2、計算機視覺中的圖像配準是將不同時間、不同視角或不同傳感器獲取的圖像進行匹配和對齊。以下關于圖像配準的敘述,不正確的是()A.圖像配準需要找到圖像之間的對應點或特征,然后進行變換和對齊B.圖像配準在醫(yī)學圖像分析、遙感圖像處理和三維重建等領域有著廣泛的應用C.圖像配準的精度和魯棒性受到圖像質量、噪聲和幾何變形等因素的影響D.圖像配準是一個簡單的過程,不需要復雜的算法和優(yōu)化3、在計算機視覺的目標跟蹤任務中,需要在視頻序列中持續(xù)跟蹤特定的目標。假設我們要跟蹤一個在人群中快速移動的人物,以下哪種目標跟蹤算法能夠更好地處理目標的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學習的跟蹤算法,如Siamese網(wǎng)絡D.基于均值漂移的跟蹤算法4、在計算機視覺的醫(yī)學圖像分析任務中,假設要檢測醫(yī)學圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學圖像的特殊性?()A.結合先驗醫(yī)學知識和圖像特征B.使用通用的圖像檢測算法,不考慮醫(yī)學背景C.只對圖像的部分區(qū)域進行分析,忽略其他部分D.隨機標記圖像中的區(qū)域為腫瘤區(qū)域5、在計算機視覺的行人重識別任務中,假設要在多個攝像頭拍攝的畫面中找到同一個行人。以下關于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權重分配C.根據(jù)特征的重要性為其分配不同的權重進行融合D.利用深度學習模型自動學習特征的融合方式6、圖像分類是計算機視覺中的常見任務之一。對于圖像分類模型的訓練,以下說法錯誤的是()A.需要大量有標注的圖像數(shù)據(jù)來學習不同類別的特征B.卷積神經(jīng)網(wǎng)絡(CNN)在圖像分類任務中表現(xiàn)出色C.模型的訓練過程是不斷調(diào)整參數(shù)以最小化預測誤差的過程D.圖像分類模型一旦訓練完成,就無法再對新的類別進行學習和分類7、在計算機視覺的目標跟蹤任務中,目標可能會被遮擋、變形或快速移動。假設要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應對這種復雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法8、計算機視覺中的場景理解是理解圖像或視頻中的場景內(nèi)容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現(xiàn)場景理解B.結合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠學習場景中的全局特征和關系,實現(xiàn)對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義9、在計算機視覺的場景理解任務中,需要對整個圖像場景進行分析和解釋。假設我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學習的場景解析網(wǎng)絡D.基于特征匹配和聚類的方法10、計算機視覺在無人駕駛中的應用需要應對各種復雜的環(huán)境和情況。假設無人駕駛汽車要在惡劣天氣下行駛,以下關于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質量和清晰度,增加目標檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學習模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數(shù)據(jù)增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性11、計算機視覺在工業(yè)檢測中的應用可以提高產(chǎn)品質量和生產(chǎn)效率。假設要檢測生產(chǎn)線上的零件是否存在缺陷,以下關于工業(yè)檢測中的計算機視覺應用的描述,哪一項是不正確的?()A.可以使用機器視覺系統(tǒng)對零件進行實時檢測,快速發(fā)現(xiàn)缺陷B.深度學習模型能夠自動學習正常零件和缺陷零件的特征差異,實現(xiàn)準確的缺陷檢測C.工業(yè)檢測中的計算機視覺系統(tǒng)需要具備高度的準確性和穩(wěn)定性,能夠適應不同的生產(chǎn)環(huán)境D.計算機視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結構和性能無法進行評估12、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標。假設要跟蹤一只在森林中奔跑的動物,以下關于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標的模型來預測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標的顯著特征進行跟蹤C.視覺跟蹤算法在目標發(fā)生快速變形或完全遮擋時仍能保持準確跟蹤D.結合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性13、圖像分類是計算機視覺的基礎任務之一。假設要對大量的自然風景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡自動提取特征+深度學習分類器D.顏色直方圖特征+樸素貝葉斯14、在計算機視覺的目標檢測中,對于小目標的檢測往往具有較大的挑戰(zhàn)性。為了提高小目標檢測的準確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓練數(shù)據(jù)中的小目標樣本C.使用更高分辨率的輸入圖像D.以上都是15、在計算機視覺的三維重建任務中,需要從多視角的圖像中恢復物體的三維形狀。假設我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結構光方法C.運動恢復結構(SFM)D.基于投影的方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述圖像的色彩渲染技術。2、(本題5分)計算機視覺中如何進行商品質量檢測?3、(本題5分)描述計算機視覺在水下探測中的應用。4、(本題5分)簡述計算機視覺在電商中的商品推薦和圖像搜索。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用圖像識別技術,對不同種類的寵物圖像進行分類和識別。2、(本題5分)設計一個系統(tǒng),利用計算機視覺檢測公園內(nèi)的垃圾是否及時清理。3、(本題5分)通過圖像分割技術,將衛(wèi)星圖像中的云層和陸地進行分離。4、(本題5分)使用目標檢測技術,從海洋監(jiān)測圖像中識別出特定的海洋生物。5、(本題5分)基于深度學習的圖像生成模型,生成具有特定風格的藝術圖像。四、分析題(本大題共4個小題,共40分)1、(本題10分)選取一個藝術展覽的畫冊設計,分析其封面設計、內(nèi)頁排版和圖片選擇,討論如何傳達展覽的藝術價值和吸引觀眾的收藏。2、(本題10分)某汽車品牌的車展展臺設計獨具匠心,吸引了眾多參觀者的目光。請剖析展臺在空間造型、車輛展示方式、多媒體互動體驗

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論