版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東泰安市高三第二次診斷性檢測數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調.如圖的程序是與“三分損益”結合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.2.函數(shù)在的圖象大致為A. B.C. D.3.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或74.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.若集合,則()A. B.C. D.6.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.017.復數(shù)滿足,則()A. B. C. D.8.已知復數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.9.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.96010.設集合,,若,則()A. B. C. D.11.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.412.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合A=,B=,若AB中有且只有一個元素,則實數(shù)a的值為_______.14.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.15.割圓術是估算圓周率的科學方法,由三國時期數(shù)學家劉徽創(chuàng)立,他用圓內接正多邊形面積無限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內任取一點,則該點取自其內接正十二邊形內部的概率為________.16.已知(為虛數(shù)單位),則復數(shù)________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)當時,證明:;(2)設直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.18.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.19.(12分)某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M
),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1
(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當?shù)钠矫嬷苯亲鴺讼?,并求棧道AB的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.20.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.21.(12分)已知拋物線E:y2=2px(p>0),焦點F到準線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.22.(10分)定義:若數(shù)列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結果.【詳解】輸入,由題意執(zhí)行循環(huán)結構程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結果.故選:【點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結果,解答此類題目時結合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎.2、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.3、C【解析】
根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎題.4、C【解析】
根據(jù)空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.5、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.6、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數(shù)表法,考查學習能力和運用能力.7、C【解析】
利用復數(shù)模與除法運算即可得到結果.【詳解】解:,故選:C【點睛】本題考查復數(shù)除法運算,考查復數(shù)的模,考查計算能力,屬于基礎題.8、D【解析】
根據(jù)復數(shù)z滿足,利用復數(shù)的除法求得,再根據(jù)復數(shù)的概念求解.【詳解】因為復數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.9、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.10、A【解析】
根據(jù)交集的結果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據(jù)交集的結果確定集合中含有的元素,本題屬于基礎題.11、A【解析】
根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.12、D【解析】
根據(jù)中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標互為相反數(shù),不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標表示,考查化歸與轉化的數(shù)學思想方法,考查利用導數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
利用AB中有且只有一個元素,可得,可求實數(shù)a的值.【詳解】由題意AB中有且只有一個元素,所以,即.故答案為:.【點睛】本題主要考查集合的交集運算,集合交集的運算本質是存同去異,側重考查數(shù)學運算的核心素養(yǎng).14、【解析】
將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【點睛】本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.15、【解析】
求出圓內接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點取自其內接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎題.16、【解析】
解:故答案為:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據(jù),轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當時,為單調遞增函數(shù),且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數(shù),,所以;因為為單調遞增函數(shù),且,因此;因為為整數(shù),且,所以.【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.18、(1);(2)4【解析】
(1)根據(jù)已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結合基本不等式,求出的最大值,即可求出結論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當且僅當時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應用基本不等式求最值,屬于基礎題.19、(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】
(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設出方程,通過點的坐標可求方程;(2)設出的坐標,表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標.【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設拋物線方程為代入點B得:p=1,故方程為,x[0,1];(2)設P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當且僅當即,即,即時取等號;故P(,)時視角∠EPF最大,答:P(,)時,視角∠EPF最大.【點睛】本題主要考查圓錐曲線的實際應用,理解題意,構建合適的模型是求解的關鍵,涉及最值問題一般利用基本不等式或者導數(shù)來進行求解,側重考查數(shù)學運算的核心素養(yǎng).20、(1)證明見解析;(2)【解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.21、(1)y2=6x(2).【解析】
(1)根據(jù)拋物線定義,寫出焦點坐標和準線方程,列方程即可得解;(2)根據(jù)中點坐標表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 31114-2024冰淇淋質量要求
- 幸福家庭事跡簡介(17篇)
- 教師網(wǎng)絡安全培訓會
- 小班期末評語15篇
- 智研咨詢發(fā)布-2024年中國精密結構件行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報告
- 二零二五年度教育培訓機構教師勞動合同模板4篇
- 一類功能性神經(jīng)元的場耦合同步控制探究
- 技巧與智慧的結合
- 應急預案中的法律法規(guī)與政策解讀
- 二零二五版水利工程勞務分包及施工圖審查協(xié)議3篇
- 2024年全國職業(yè)院校技能大賽高職組(生產(chǎn)事故應急救援賽項)考試題庫(含答案)
- 老年上消化道出血急診診療專家共識2024
- 廣東省廣州黃埔區(qū)2023-2024學年八年級上學期期末物理試卷(含答案)
- 學校安全工作計劃及行事歷
- 《GMP基礎知識培訓》課件
- 貴州茅臺酒股份有限公司招聘筆試題庫2024
- 血性胸水的護理課件
- 四年級數(shù)學下冊口算天天練45
- 雕塑采購投標方案(技術標)
- 北京房地產(chǎn)典當合同書
- 文學類文本閱讀 高一語文統(tǒng)編版暑假作業(yè)
評論
0/150
提交評論