版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)九江職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)實(shí)踐》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的預(yù)訓(xùn)練語(yǔ)言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語(yǔ)言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語(yǔ)言模型的描述,哪一項(xiàng)是不正確的?()A.預(yù)訓(xùn)練語(yǔ)言模型在大規(guī)模通用語(yǔ)料上學(xué)習(xí)了語(yǔ)言的通用知識(shí)和模式B.微調(diào)時(shí)可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語(yǔ)言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對(duì)預(yù)訓(xùn)練語(yǔ)言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化2、人工智能在教育領(lǐng)域有著潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化的學(xué)習(xí)系統(tǒng)。以下關(guān)于人工智能在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能教育系統(tǒng)可以完全取代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.有助于發(fā)現(xiàn)學(xué)生的學(xué)習(xí)問(wèn)題和知識(shí)漏洞,提高教學(xué)效果3、深度學(xué)習(xí)在近年來(lái)取得了顯著的成果,特別是在圖像識(shí)別和語(yǔ)音識(shí)別等領(lǐng)域。以下關(guān)于深度學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.深度學(xué)習(xí)是一種基于多層神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法,能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和強(qiáng)大的計(jì)算資源來(lái)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)可以解決傳統(tǒng)機(jī)器學(xué)習(xí)方法難以處理的復(fù)雜問(wèn)題,如語(yǔ)義理解和情感分析D.深度學(xué)習(xí)模型的結(jié)構(gòu)和參數(shù)一旦確定,就無(wú)法根據(jù)新的數(shù)據(jù)進(jìn)行調(diào)整和優(yōu)化4、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過(guò)擬合C.提高模型精度D.以上都是5、在人工智能的發(fā)展過(guò)程中,倫理原則的制定至關(guān)重要。假設(shè)要制定人工智能倫理原則,以下關(guān)于其制定的描述,哪一項(xiàng)是不正確的?()A.應(yīng)考慮公平、公正、透明、可解釋等原則,保障公眾利益B.倫理原則應(yīng)隨著技術(shù)的發(fā)展和應(yīng)用不斷更新和完善C.制定倫理原則只需考慮技術(shù)層面的問(wèn)題,無(wú)需考慮社會(huì)和文化因素D.廣泛征求各界意見(jiàn),確保倫理原則的合理性和可行性6、在人工智能的情感識(shí)別中,假設(shè)要從一段較長(zhǎng)的語(yǔ)音中準(zhǔn)確捕捉到細(xì)微的情感變化。以下哪種技術(shù)或方法可能有助于實(shí)現(xiàn)這一目標(biāo)?()A.分析語(yǔ)音的韻律特征,如語(yǔ)調(diào)、語(yǔ)速B.只關(guān)注語(yǔ)音的內(nèi)容,忽略語(yǔ)音的表現(xiàn)形式C.對(duì)語(yǔ)音進(jìn)行分段處理,分別進(jìn)行情感識(shí)別D.不進(jìn)行任何預(yù)處理,直接分析原始語(yǔ)音7、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù),旨在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,但又不希望共享各自的數(shù)據(jù)。那么,聯(lián)邦學(xué)習(xí)是如何實(shí)現(xiàn)這一目標(biāo)的?()A.將所有數(shù)據(jù)集中到一個(gè)中心服務(wù)器進(jìn)行訓(xùn)練B.每個(gè)機(jī)構(gòu)只上傳模型參數(shù),在云端進(jìn)行聚合C.通過(guò)加密技術(shù)直接共享原始數(shù)據(jù)進(jìn)行訓(xùn)練D.不需要數(shù)據(jù)交互,各自獨(dú)立訓(xùn)練模型8、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計(jì)算量。假設(shè)要在移動(dòng)設(shè)備上部署一個(gè)深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識(shí)蒸餾D.以上都有可能9、人工智能在智能推薦系統(tǒng)中發(fā)揮著關(guān)鍵作用。假設(shè)一個(gè)電商平臺(tái)要利用人工智能為用戶提供個(gè)性化推薦,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)分析用戶的瀏覽歷史、購(gòu)買(mǎi)行為等數(shù)據(jù),了解用戶的興趣偏好B.利用協(xié)同過(guò)濾算法可以找到與目標(biāo)用戶相似的其他用戶,進(jìn)行推薦C.深度學(xué)習(xí)模型能夠捕捉復(fù)雜的用戶行為模式,提供更精準(zhǔn)的推薦D.智能推薦系統(tǒng)能夠完全滿足用戶的所有需求,不需要用戶進(jìn)一步篩選和選擇10、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來(lái)衡量模型的性能。假設(shè)評(píng)估一個(gè)分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無(wú)需考慮其他指標(biāo)11、在一個(gè)利用人工智能進(jìn)行天氣預(yù)報(bào)的系統(tǒng)中,為了提高預(yù)測(cè)的精度和時(shí)效性,以下哪個(gè)因素可能是需要重點(diǎn)關(guān)注和改進(jìn)的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計(jì)算效率C.模型的融合和集成D.以上都是12、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。假設(shè)一家工廠使用人工智能進(jìn)行質(zhì)量檢測(cè)。以下關(guān)于人工智能在制造業(yè)中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.通過(guò)機(jī)器視覺(jué)技術(shù)檢測(cè)產(chǎn)品表面的缺陷和瑕疵B.利用數(shù)據(jù)分析預(yù)測(cè)設(shè)備的故障,提前進(jìn)行維護(hù)C.人工智能可以完全自主地優(yōu)化生產(chǎn)流程,無(wú)需人工干預(yù)D.與機(jī)器人技術(shù)結(jié)合,實(shí)現(xiàn)自動(dòng)化生產(chǎn)和裝配13、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨諸多挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù)的描述,正確的是:()A.自動(dòng)駕駛汽車完全依賴傳感器數(shù)據(jù)和人工智能算法,不需要人類駕駛員的任何干預(yù)B.人工智能算法能夠在所有復(fù)雜的交通場(chǎng)景中做出完美的決策,不會(huì)出現(xiàn)錯(cuò)誤C.自動(dòng)駕駛系統(tǒng)需要融合多種傳感器數(shù)據(jù),并通過(guò)深度學(xué)習(xí)算法進(jìn)行實(shí)時(shí)的環(huán)境感知和決策制定D.自動(dòng)駕駛中的人工智能技術(shù)已經(jīng)非常成熟,不存在任何安全隱患14、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個(gè)性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對(duì)于系統(tǒng)的設(shè)計(jì)最為關(guān)鍵?()A.學(xué)生的考試成績(jī)B.學(xué)生的學(xué)習(xí)時(shí)間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置15、人工智能中的異常檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過(guò)程中檢測(cè)出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測(cè)方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測(cè)方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測(cè)模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測(cè)方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無(wú)需人工特征工程D.以上方法在不同的應(yīng)用場(chǎng)景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇16、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。假設(shè)多個(gè)機(jī)構(gòu)想要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)中,各機(jī)構(gòu)的數(shù)據(jù)需要集中到一個(gè)中心服務(wù)器進(jìn)行統(tǒng)一訓(xùn)練B.聯(lián)邦學(xué)習(xí)能夠在不共享原始數(shù)據(jù)的情況下實(shí)現(xiàn)模型的協(xié)同訓(xùn)練C.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型結(jié)構(gòu)D.聯(lián)邦學(xué)習(xí)過(guò)程中不存在數(shù)據(jù)安全和隱私泄露的風(fēng)險(xiǎn)17、深度學(xué)習(xí)作為一種強(qiáng)大的人工智能技術(shù),在圖像識(shí)別領(lǐng)域取得了顯著成果。假設(shè)要開(kāi)發(fā)一個(gè)能夠識(shí)別各種動(dòng)物的圖像識(shí)別系統(tǒng),以下關(guān)于深度學(xué)習(xí)在該任務(wù)中的描述,哪一項(xiàng)是不正確的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)常用于圖像特征提取和分類,能有效識(shí)別動(dòng)物圖像B.深度神經(jīng)網(wǎng)絡(luò)需要大量的標(biāo)注圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.通過(guò)調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以優(yōu)化圖像識(shí)別模型的性能D.深度學(xué)習(xí)模型一旦訓(xùn)練完成,就無(wú)需再進(jìn)行優(yōu)化和改進(jìn),能夠始終保持高精度18、人工智能中的多智能體系統(tǒng)是由多個(gè)相互作用的智能體組成的。假設(shè)在一個(gè)物流配送場(chǎng)景中,多個(gè)配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點(diǎn),哪一項(xiàng)是不正確的?()A.智能體之間需要進(jìn)行有效的通信和協(xié)調(diào)B.單個(gè)智能體的決策會(huì)影響整個(gè)系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略19、在人工智能的自然語(yǔ)言生成中,故事生成是一個(gè)富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計(jì)算機(jī)生成一個(gè)富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會(huì)背景D.故事生成不需要考慮讀者的喜好和期望20、人工智能中的強(qiáng)化學(xué)習(xí)在機(jī)器人控制領(lǐng)域有重要應(yīng)用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì),哪一項(xiàng)是最需要仔細(xì)考慮的?()A.只根據(jù)機(jī)器人是否到達(dá)目標(biāo)位置給予獎(jiǎng)勵(lì)B.綜合考慮機(jī)器人的行走速度、穩(wěn)定性和能量消耗等因素給予獎(jiǎng)勵(lì)C.給予固定的獎(jiǎng)勵(lì)值,不考慮機(jī)器人的表現(xiàn)D.隨機(jī)給予獎(jiǎng)勵(lì),增加學(xué)習(xí)的不確定性二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋組合優(yōu)化問(wèn)題的類型和算法。2、(本題5分)解釋隨機(jī)森林算法的特點(diǎn)。3、(本題5分)簡(jiǎn)述人工智能在軍事領(lǐng)域的應(yīng)用和風(fēng)險(xiǎn)。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)考察某智能民間戲曲文化傳承效果監(jiān)測(cè)系統(tǒng)中人工智能的監(jiān)測(cè)指標(biāo)和反饋機(jī)制。2、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能書(shū)法教育指導(dǎo)系統(tǒng),探討其如何糾正書(shū)法練習(xí)中的錯(cuò)誤。3、(本題5分)以某智能保險(xiǎn)理賠評(píng)估系統(tǒng)為例,探討人工智能在理賠決策中的作用。4、(本題5分)剖析某智能安防系統(tǒng)中人工智能的角色,如入侵檢測(cè)和人員識(shí)別。5、(本題5分)考察一個(gè)基
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年甲乙雙方關(guān)于量子通訊網(wǎng)絡(luò)建設(shè)的施工合同
- 2024年版紅木家具交易協(xié)議細(xì)則版
- 會(huì)計(jì)2023個(gè)人工作計(jì)劃
- 高密度連接線路板項(xiàng)目商業(yè)計(jì)劃書(shū)
- 2018-2024年中國(guó)廣告行業(yè)市場(chǎng)發(fā)展現(xiàn)狀調(diào)研及投資趨勢(shì)前景分析報(bào)告
- 2022-2027年中國(guó)內(nèi)窺鏡行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)及投資戰(zhàn)略研究報(bào)告
- 車間主管個(gè)人工作計(jì)劃5篇
- 買(mǎi)賣合同模板集合5篇
- 網(wǎng)絡(luò)安全教育觀后感
- 工作計(jì)劃-文檔
- 醫(yī)師定考的個(gè)人述職報(bào)告
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- 施工現(xiàn)場(chǎng)人員授權(quán)書(shū)-模板
- 環(huán)境保護(hù)水土保持保證體系及措施
- 地下室頂板預(yù)留洞口施工方案標(biāo)準(zhǔn)版
- 2023-2024學(xué)年成都市武侯區(qū)六上數(shù)學(xué)期末達(dá)標(biāo)測(cè)試試題含答案
- 軍事思想論文范文(通用6篇)
- (完整版)EORTC生命質(zhì)量測(cè)定量表QLQ-C30(V3.0)
- 七年級(jí)體育與健康 《足球》單元作業(yè)設(shè)計(jì)
- 毛細(xì)管升高法測(cè)量液體表面張力系數(shù)
- 室內(nèi)覆蓋方案設(shè)計(jì)與典型場(chǎng)景
評(píng)論
0/150
提交評(píng)論