江蘇師范大學《機器學習》2023-2024學年第一學期期末試卷_第1頁
江蘇師范大學《機器學習》2023-2024學年第一學期期末試卷_第2頁
江蘇師范大學《機器學習》2023-2024學年第一學期期末試卷_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁江蘇師范大學《機器學習》

2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設我們有一個時間序列數據,想要預測未來的值。以下哪種機器學習算法可能不太適合()A.線性回歸B.長短期記憶網絡(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)2、在一個客戶流失預測的問題中,需要根據客戶的消費行為、服務使用情況等數據來提前預測哪些客戶可能會流失。以下哪種特征工程方法可能是最有幫助的?()A.手動選擇和構建與客戶流失相關的特征,如消費頻率、消費金額的變化等,但可能忽略一些潛在的重要特征B.利用自動特征選擇算法,如基于相關性或基于樹模型的特征重要性評估,但可能受到數據噪聲的影響C.進行特征變換,如對數變換、標準化等,以改善數據分布和模型性能,但可能丟失原始數據的某些信息D.以上方法結合使用,綜合考慮數據特點和模型需求3、在一個分類問題中,如果數據集中存在多個類別,且類別之間存在層次結構,以下哪種方法可以考慮這種層次結構?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機4、假設要開發(fā)一個疾病診斷的輔助系統(tǒng),能夠根據患者的醫(yī)學影像(如X光、CT等)和臨床數據做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡單平均多個模型的預測結果,計算簡單,但可能無法充分利用各個模型的優(yōu)勢B.基于加權平均的融合,根據模型的性能或重要性分配權重,但權重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個模型的輸出作為新的特征輸入到一個元模型中進行融合,但可能存在過擬合風險D.基于注意力機制的融合,動態(tài)地根據輸入數據為不同模型分配權重,能夠更好地適應不同情況,但實現較復雜5、某研究需要對音頻信號進行分類,例如區(qū)分不同的音樂風格。以下哪種特征在音頻分類中經常被使用?()A.頻譜特征B.時域特征C.時頻特征D.以上特征都常用6、假設在一個醫(yī)療診斷的場景中,需要通過機器學習算法來預測患者是否患有某種疾病。收集了大量患者的生理指標、病史和生活習慣等數據。在選擇算法時,需要考慮模型的準確性、可解釋性以及對新數據的泛化能力。以下哪種算法可能是最適合的?()A.決策樹算法,因為它能夠清晰地展示決策過程,具有較好的可解釋性,但可能在復雜數據上的準確性有限B.支持向量機算法,對高維數據有較好的處理能力,準確性較高,但模型解釋相對困難C.隨機森林算法,由多個決策樹組成,準確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學習中的卷積神經網絡算法,能夠自動提取特征,準確性可能很高,但模型非常復雜,難以解釋7、在一個深度學習模型的訓練過程中,出現了梯度消失的問題。以下哪種方法可以嘗試解決這個問題?()A.使用ReLU激活函數B.增加網絡層數C.減小學習率D.以上方法都可能有效8、某研究團隊正在開發(fā)一個用于預測股票價格的機器學習模型,需要考慮市場的動態(tài)性和不確定性。以下哪種模型可能更適合處理這種復雜的時間序列數據?()A.長短時記憶網絡(LSTM)結合注意力機制B.門控循環(huán)單元(GRU)與卷積神經網絡(CNN)的組合C.隨機森林與自回歸移動平均模型(ARMA)的融合D.以上模型都有可能9、在機器學習中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經網絡C.隨機森林D.支持向量機10、某機器學習項目需要對文本進行主題建模,以發(fā)現文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用11、在一個回歸問題中,如果數據存在非線性關系并且噪聲較大,以下哪種模型可能更適合?()A.多項式回歸B.高斯過程回歸C.嶺回歸D.Lasso回歸12、假設正在比較不同的聚類算法,用于對一組沒有標簽的客戶數據進行分組。如果數據分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法13、某公司希望通過機器學習來預測產品的需求,以便更有效地進行生產計劃和庫存管理。數據集涵蓋了歷史銷售數據、市場趨勢、季節(jié)因素和經濟指標等多方面信息。在這種復雜的多因素預測任務中,以下哪種模型可能表現出色?()A.線性回歸B.多層感知機(MLP)C.循環(huán)神經網絡(RNN)D.隨機森林14、假設要預測一個時間序列數據中的突然變化點,以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數據差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設檢驗,如t檢驗或方差分析,但對數據分布有要求C.變點檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點,但可能對噪聲敏感D.深度學習中的異常檢測模型,能夠自動學習變化模式,但需要大量數據訓練15、在分類問題中,如果正負樣本比例嚴重失衡,以下哪種評價指標更合適?()A.準確率B.召回率C.F1值D.均方誤差16、在特征工程中,獨熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數值特征C.降維D.以上都不是17、強化學習中的智能體通過與環(huán)境的交互來學習最優(yōu)策略。以下關于強化學習的說法中,錯誤的是:強化學習的目標是最大化累計獎勵。智能體根據當前狀態(tài)選擇動作,環(huán)境根據動作反饋新的狀態(tài)和獎勵。那么,下列關于強化學習的說法錯誤的是()A.Q學習是一種基于值函數的強化學習算法B.策略梯度算法是一種基于策略的強化學習算法C.強化學習算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強化學習可以應用于機器人控制、游戲等領域18、在進行自動特征工程時,以下關于自動特征工程方法的描述,哪一項是不準確的?()A.基于深度學習的自動特征學習可以從原始數據中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率19、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數據的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數據集,優(yōu)先選擇復雜的深度學習算法B.對于高維度數據,優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務,優(yōu)先選擇計算速度快的算法D.對于不平衡數據集,優(yōu)先選擇對不平衡數據敏感的算法20、假設正在研究一個醫(yī)療圖像診斷問題,需要對腫瘤進行分類。由于醫(yī)療數據的獲取較為困難,數據集規(guī)模較小。在這種情況下,以下哪種技術可能有助于提高模型的性能?()A.使用大規(guī)模的預訓練模型,并在小數據集上進行微調B.增加模型的層數和參數數量,提高模型的復雜度C.減少特征數量,簡化模型結構D.不進行任何特殊處理,直接使用傳統(tǒng)機器學習算法二、簡答題(本大題共3個小題,共15分)1、(本題5分)談談在通信領域,機器學習的應用。2、(本題5分)說明機器學習中t-SNE降維算法的優(yōu)勢。3、(本題5分)簡述在智能環(huán)境監(jiān)測中,機器學習的方法。三、應用題(本大題共5個小題,共25分)1、(本題5分)使用CNN對人臉表情進行識別。2、(本題5分)借助健身運動數據為用戶制定個性化健身方案。3、(本題5分)利用兒科學數據診斷兒童疾病和制定治療方案。4、(本題5分)利用工業(yè)生產數據進行產品質量檢測,降低次品率。5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論