版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省東營(yíng)市利津一中高三壓軸卷數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.2.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F且EF=,則下列結(jié)論中錯(cuò)誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值3.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.4.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.65.已知函數(shù),為圖象的對(duì)稱中心,若圖象上相鄰兩個(gè)極值點(diǎn),滿足,則下列區(qū)間中存在極值點(diǎn)的是()A. B. C. D.6.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”7.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.8.已知展開式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-819.我國(guó)宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少?gòu)V求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長(zhǎng),,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或10.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.011.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為()A. B. C. D.12.已知函數(shù),則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且向量與的夾角為_______.14.若,則=____,=___.15.如圖,在中,已知,為邊的中點(diǎn).若,垂足為,則的值為__.16.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個(gè)和尚在做法事之前按身高從低到高站成一列,已知前三個(gè)和尚的身高依次成等差數(shù)列,后三個(gè)和尚的身高依次成等比數(shù)列,且前三個(gè)和尚的身高之和為cm,中間兩個(gè)和尚的身高之和為cm,則最高的和尚的身高是____________cm.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱.(為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.18.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說明理由.19.(12分)已知函數(shù),的最大值為.求實(shí)數(shù)b的值;當(dāng)時(shí),討論函數(shù)的單調(diào)性;當(dāng)時(shí),令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域?yàn)??若存在,求?shí)數(shù)k的取值范圍;若不存在,請(qǐng)說明理由.20.(12分)已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m值.(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.21.(12分)某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時(shí)間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開一壺水最省煤氣?附:對(duì)于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.22.(10分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.2、D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)?,所以平面,又因?yàn)槠矫?,所以,故正確;B.因?yàn)?,所以,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ担狡矫娴木嚯x為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)?,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)?,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線所成角時(shí),將直線平移至同一平面內(nèi).3、B【解析】
根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開平方求得結(jié)果;解題關(guān)鍵是需要通過夾角取值范圍的分析,得到的最小值.4、C【解析】
模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.5、A【解析】
結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個(gè)極值點(diǎn),滿足,即,,,且,,,,,,當(dāng)時(shí),為函數(shù)的一個(gè)極小值點(diǎn),而.故選:.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡(jiǎn)單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.6、B【解析】
解不等式,可判斷A選項(xiàng)的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項(xiàng)的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項(xiàng)錯(cuò)誤;命題的逆命題是“若,則”,該命題為真命題,B選項(xiàng)正確;命題的否命題是“若,則”,C選項(xiàng)錯(cuò)誤;命題的逆否命題是“若,則”,D選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.7、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.8、B【解析】
根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.9、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.10、B【解析】
先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點(diǎn)睛】本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.11、A【解析】
設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)?,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)?,所以,解?因?yàn)?,所?設(shè),易知平面ABC,則.因?yàn)椋?,即,解?所以球Q的半徑.故選:A【點(diǎn)睛】本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題12、B【解析】
由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時(shí),,單調(diào)遞增,∵,故不等式的解集等價(jià)于不等式的解集..∴.故選:B.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.14、12821【解析】
令,求得的值.利用展開式的通項(xiàng)公式,求得的值.【詳解】令,得.展開式的通項(xiàng)公式為,當(dāng)時(shí),為,即.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式,考查賦值法求解二項(xiàng)式系數(shù)有關(guān)問題,屬于基礎(chǔ)題.15、【解析】
,由余弦定理,得,得,,,所以,所以.點(diǎn)睛:本題考查平面向量的綜合應(yīng)用.本題中存在垂直關(guān)系,所以在線性表示的過程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長(zhǎng)度,利用余弦定理和面積公式求解即可.16、【解析】
依題意設(shè)前三個(gè)和尚的身高依次為,第四個(gè)(最高)和尚的身高為,則,解得,又,解得,又因?yàn)槌傻缺葦?shù)列,則公比,故.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對(duì)稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),,又,當(dāng)時(shí),,曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,而,故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時(shí),;當(dāng)時(shí),,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因?yàn)?,,又因?yàn)樵谑菧p函數(shù).所以當(dāng)時(shí),.所以正整數(shù)的最小值為2.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計(jì)算能力.18、(1)(2)直線恒過定點(diǎn),詳見解析【解析】
(1)依題意由橢圓的簡(jiǎn)單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點(diǎn)的坐標(biāo),同理可求出點(diǎn)的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡(jiǎn)成點(diǎn)斜式,即可求出定點(diǎn)坐標(biāo).【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當(dāng)時(shí),由有.∴,同理,又∴,當(dāng)時(shí),∴直線的方程為∴直線恒過定點(diǎn),當(dāng)時(shí),此時(shí)也過定點(diǎn)..綜上:直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點(diǎn)問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于難題.19、(1);(2)時(shí),在單調(diào)增;時(shí),在單調(diào)遞減,在單調(diào)遞增;時(shí),同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,進(jìn)而可得結(jié)果.詳解:(1)由題意得,令,解得,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減.所以當(dāng)時(shí),取得極大值,也是最大值,所以,解得.(2)的定義域?yàn)?①即,則,故在單調(diào)增②若,而,故,則當(dāng)時(shí),;當(dāng)及時(shí),故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對(duì)恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,即方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,令,,則,設(shè),,則對(duì)恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個(gè)不相等的實(shí)根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點(diǎn)睛:本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京郵電大學(xué)《程序設(shè)計(jì)語(yǔ)言B》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西省上饒市2024年中考數(shù)學(xué)二模試題含答案
- 九江職業(yè)大學(xué)《商業(yè)推廣設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇航空職業(yè)技術(shù)學(xué)院《Premere視頻編輯應(yīng)用與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 黃淮學(xué)院《舞蹈編創(chuàng)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】第十二章 簡(jiǎn)單機(jī)械 章末練習(xí)-2024-2025學(xué)年八年級(jí)下冊(cè)人教版物理
- 重慶商務(wù)職業(yè)學(xué)院《工程制圖與CAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶第二師范學(xué)院《藥物流行病學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江長(zhǎng)征職業(yè)技術(shù)學(xué)院《普通生物學(xué)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江橫店影視職業(yè)學(xué)院《建筑工程計(jì)里與計(jì)價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025寒假散學(xué)典禮(休業(yè)式)上校長(zhǎng)精彩講話:以董宇輝的創(chuàng)新、羅振宇的堅(jiān)持、馬龍的熱愛啟迪未來
- 2025年浙江中外運(yùn)有限公司招聘筆試參考題庫(kù)含答案解析
- 建筑公司2025年度工作總結(jié)和2025年工作安排計(jì)劃
- 電壓損失計(jì)算表
- 福建省福州市2023-2024學(xué)年高二上學(xué)期期末測(cè)試英語(yǔ)試卷(含答案)
- 腦疝病人的觀察與護(hù)理
- 人民醫(yī)院建設(shè)項(xiàng)目背景分析
- 初級(jí)會(huì)計(jì)實(shí)務(wù)題庫(kù)(613道)
- 2024年高考地理時(shí)事熱點(diǎn):環(huán)保(附答案解析)
- 招標(biāo)代理機(jī)構(gòu)選取技術(shù)標(biāo)投標(biāo)方案(技術(shù)方案)
- 北師大版本八年級(jí)上冊(cè)第一章單元測(cè)試卷(A卷)【含答案】
評(píng)論
0/150
提交評(píng)論