吉首大學《機器學習原理》2023-2024學年第一學期期末試卷_第1頁
吉首大學《機器學習原理》2023-2024學年第一學期期末試卷_第2頁
吉首大學《機器學習原理》2023-2024學年第一學期期末試卷_第3頁
吉首大學《機器學習原理》2023-2024學年第一學期期末試卷_第4頁
吉首大學《機器學習原理》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁吉首大學

《機器學習原理》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機B.決策樹C.樸素貝葉斯D.隨機森林2、在進行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對特征進行主成分分析C.對特征進行標準化D.以上都可以3、某研究需要對一個大型數(shù)據(jù)集進行降維,同時希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機鄰域嵌入(t-SNE)D.自編碼器4、在機器學習中,模型的可解釋性也是一個重要的問題。以下關(guān)于模型可解釋性的說法中,錯誤的是:模型的可解釋性是指能夠理解模型的決策過程和預測結(jié)果的能力??山忉屝詫τ谝恍╆P(guān)鍵領(lǐng)域如醫(yī)療、金融等非常重要。那么,下列關(guān)于模型可解釋性的說法錯誤的是()A.線性回歸模型具有較好的可解釋性,因為它的決策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因為可以通過樹形結(jié)構(gòu)直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡模型通常具有較低的可解釋性,因為其決策過程非常復雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會降低性能5、假設正在研究一個醫(yī)療圖像診斷問題,需要對腫瘤進行分類。由于醫(yī)療數(shù)據(jù)的獲取較為困難,數(shù)據(jù)集規(guī)模較小。在這種情況下,以下哪種技術(shù)可能有助于提高模型的性能?()A.使用大規(guī)模的預訓練模型,并在小數(shù)據(jù)集上進行微調(diào)B.增加模型的層數(shù)和參數(shù)數(shù)量,提高模型的復雜度C.減少特征數(shù)量,簡化模型結(jié)構(gòu)D.不進行任何特殊處理,直接使用傳統(tǒng)機器學習算法6、假設要對一個時間序列數(shù)據(jù)進行預測,例如股票價格的走勢。數(shù)據(jù)具有明顯的趨勢和季節(jié)性特征。以下哪種時間序列預測方法可能較為合適?()A.移動平均法B.指數(shù)平滑法C.ARIMA模型D.以上方法都可能適用,取決于具體數(shù)據(jù)特點7、機器學習中的算法選擇需要考慮多個因素。以下關(guān)于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復雜的深度學習算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務,優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法8、在一個文本分類任務中,使用了樸素貝葉斯算法。樸素貝葉斯算法基于貝葉斯定理,假設特征之間相互獨立。然而,在實際的文本數(shù)據(jù)中,特征之間往往存在一定的相關(guān)性。以下關(guān)于樸素貝葉斯算法在文本分類中的應用,哪一項是正確的?()A.由于特征不獨立的假設,樸素貝葉斯算法在文本分類中效果很差B.盡管存在特征相關(guān)性,樸素貝葉斯算法在許多文本分類任務中仍然表現(xiàn)良好C.為了提高性能,需要對文本數(shù)據(jù)進行特殊處理,使其滿足特征獨立的假設D.樸素貝葉斯算法只適用于特征完全獨立的數(shù)據(jù)集,不適用于文本分類9、假設正在研究一個文本生成任務,例如生成新聞文章。以下哪種深度學習模型架構(gòu)在自然語言生成中表現(xiàn)出色?()A.循環(huán)神經(jīng)網(wǎng)絡(RNN)B.長短時記憶網(wǎng)絡(LSTM)C.門控循環(huán)單元(GRU)D.以上模型都常用于文本生成10、某研究團隊正在開發(fā)一個用于醫(yī)療診斷的機器學習系統(tǒng),需要對疾病進行預測。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢?()A.深度學習模型B.決策樹C.集成學習模型D.強化學習模型11、在進行特征工程時,需要對連續(xù)型特征進行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時減少數(shù)據(jù)的復雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化12、在特征工程中,獨熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是13、想象一個圖像識別的任務,需要對大量的圖片進行分類,例如區(qū)分貓和狗的圖片。為了達到較好的識別效果,同時考慮計算資源和訓練時間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機器學習算法,如基于特征工程的支持向量機,需要手動設計特征,但計算量相對較小B.采用淺層的神經(jīng)網(wǎng)絡,如只有一到兩個隱藏層的神經(jīng)網(wǎng)絡,訓練速度較快,但可能無法捕捉復雜的圖像特征C.運用深度卷積神經(jīng)網(wǎng)絡,如ResNet架構(gòu),能夠自動學習特征,識別效果好,但計算資源需求大,訓練時間長D.利用遷移學習,將在大規(guī)模圖像數(shù)據(jù)集上預訓練好的模型,如Inception模型,微調(diào)應用到當前任務,節(jié)省訓練時間和計算資源14、假設正在構(gòu)建一個推薦系統(tǒng),需要根據(jù)用戶的歷史行為和偏好為其推薦相關(guān)的產(chǎn)品或內(nèi)容。如果數(shù)據(jù)具有稀疏性和冷啟動問題,以下哪種方法可以幫助改善推薦效果?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.混合推薦D.以上方法都可以嘗試15、在一個強化學習問題中,如果智能體需要與多個對手進行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強化學習算法C.策略梯度算法D.以上算法都可以16、在機器學習中,模型評估是非常重要的環(huán)節(jié)。以下關(guān)于模型評估的說法中,錯誤的是:常用的模型評估指標有準確率、精確率、召回率、F1值等??梢酝ㄟ^交叉驗證等方法來評估模型的性能。那么,下列關(guān)于模型評估的說法錯誤的是()A.準確率是指模型正確預測的樣本數(shù)占總樣本數(shù)的比例B.精確率是指模型預測為正類的樣本中真正為正類的比例C.召回率是指真正為正類的樣本中被模型預測為正類的比例D.模型的評估指標越高越好,不需要考慮具體的應用場景17、在進行特征選擇時,有多種方法可以評估特征的重要性。假設我們有一個包含多個特征的數(shù)據(jù)集。以下關(guān)于特征重要性評估方法的描述,哪一項是不準確的?()A.信息增益通過計算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗可以檢驗特征與目標變量之間的獨立性,從而評估特征的重要性C.隨機森林中的特征重要性評估是基于特征對模型性能的貢獻程度D.所有的特征重要性評估方法得到的結(jié)果都是完全準確和可靠的,不需要進一步驗證18、在一個圖像生成的任務中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對抗網(wǎng)絡(GAN),通過對抗訓練生成逼真的圖像,但可能存在模式崩潰和訓練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計算成本較高19、假設正在開發(fā)一個用于推薦系統(tǒng)的深度學習模型,需要考慮用戶的短期興趣和長期興趣。以下哪種模型結(jié)構(gòu)可以同時捕捉這兩種興趣?()A.注意力機制與循環(huán)神經(jīng)網(wǎng)絡的結(jié)合B.多層感知機與卷積神經(jīng)網(wǎng)絡的組合C.生成對抗網(wǎng)絡與自編碼器的融合D.以上模型都有可能20、在自然語言處理任務中,如文本分類,詞向量表示是基礎。常見的詞向量模型有Word2Vec和GloVe等。假設我們有一個大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時考慮到計算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項是不準確的?()A.Word2Vec可以通過CBOW和Skip-gram兩種方式訓練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計信息,能夠捕捉更全局的語義關(guān)系C.Word2Vec訓練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述機器學習在情感分析中的作用。2、(本題5分)機器學習在細胞遺傳學中的應用是什么?3、(本題5分)談談層次聚類算法的基本思想。三、應用題(本大題共5個小題,共25分)1、(本題5分)運用梯度提升樹預測電力負荷。2、(本題5分)利用攝影藝術(shù)數(shù)據(jù)提升照片質(zhì)量和藝術(shù)效果。3、(本題5分)計算一組特征的重要性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論