版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
三門(mén)峽市重點(diǎn)中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.2.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無(wú)數(shù)條直線與l相交3.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對(duì)于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)橫坐標(biāo)的和為()A. B. C. D.5.已知雙曲線的左、右焦點(diǎn)分別為、,拋物線與雙曲線有相同的焦點(diǎn).設(shè)為拋物線與雙曲線的一個(gè)交點(diǎn),且,則雙曲線的離心率為()A.或 B.或 C.或 D.或6.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.7.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.49.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.11.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.12.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點(diǎn)處的切線方程為_(kāi)__________.14.定義在上的奇函數(shù)滿足,并且當(dāng)時(shí),則___15.(x+y)(2x-y)5的展開(kāi)式中x3y3的系數(shù)為_(kāi)_______.16.利用等面積法可以推導(dǎo)出在邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長(zhǎng)為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.18.(12分)已知函數(shù),(Ⅰ)當(dāng)時(shí),證明;(Ⅱ)已知點(diǎn),點(diǎn),設(shè)函數(shù),當(dāng)時(shí),試判斷的零點(diǎn)個(gè)數(shù).19.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動(dòng)新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場(chǎng)的生產(chǎn)與銷售.下圖是我國(guó)某地區(qū)年至年新能源汽車的銷量(單位:萬(wàn)臺(tái))按季度(一年四個(gè)季度)統(tǒng)計(jì)制成的頻率分布直方圖.(1)求直方圖中的值,并估計(jì)銷量的中位數(shù);(2)請(qǐng)根據(jù)頻率分布直方圖估計(jì)新能源汽車平均每個(gè)季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計(jì)年的銷售量.20.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.21.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點(diǎn),且.(1)求證:平面ACE;(2)當(dāng)PA的長(zhǎng)為何值時(shí),AC與平面PCD所成的角為?22.(10分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.2、D【解析】
通過(guò)條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.3、C【解析】
由已知先求出,即,進(jìn)一步可得,再將所求問(wèn)題轉(zhuǎn)化為對(duì)于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時(shí),則,,所以,,顯然當(dāng)時(shí),,故,,若對(duì)于任意正整數(shù)不等式恒成立,即對(duì)于任意正整數(shù)恒成立,即對(duì)于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問(wèn)題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識(shí),是一道較為綜合的數(shù)列題.4、B【解析】
根據(jù)兩個(gè)函數(shù)相等,求出所有交點(diǎn)的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)的和,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).5、D【解析】
設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【詳解】過(guò)分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點(diǎn),則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點(diǎn)睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡(jiǎn)單性質(zhì),考查運(yùn)算求解能力,屬于中檔題.6、A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.7、B【解析】
利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.8、B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.9、A【解析】
設(shè)成立;反之,滿足,但,故選A.10、D【解析】
利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.11、A【解析】
先通過(guò)降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因?yàn)?,所以f(x)的最小值為.故選:A【點(diǎn)睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運(yùn)算求解的能力,屬于中檔題.12、A【解析】
作出可行域,由,可得.當(dāng)直線過(guò)可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過(guò)可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查基本不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】因?yàn)?,所以,又故切線方程為,整理為,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于容易題.14、【解析】
根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對(duì)稱軸及周期性,進(jìn)而由的解析式求得的值.【詳解】滿足,由函數(shù)對(duì)稱性可知關(guān)于對(duì)稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時(shí),所以,所以,故答案為:.【點(diǎn)睛】本題考查了函數(shù)奇偶性與對(duì)稱性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.15、40【解析】
先求出的展開(kāi)式的通項(xiàng),再求出即得解.【詳解】設(shè)的展開(kāi)式的通項(xiàng)為,令r=3,則,令r=2,則,所以展開(kāi)式中含x3y3的項(xiàng)為.所以x3y3的系數(shù)為40.故答案為:40【點(diǎn)睛】本題主要考查二項(xiàng)式定理求指定項(xiàng)的系數(shù),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、【解析】
計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)1.【解析】
(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標(biāo)方程為,顯然直線l與曲線C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問(wèn)題,是一道容易題.18、(Ⅰ)詳見(jiàn)解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點(diǎn),點(diǎn),∴,.①當(dāng)時(shí),可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個(gè)零點(diǎn),②當(dāng)時(shí),,,∴,∴在恒成立,∴在無(wú)零點(diǎn).③當(dāng)時(shí),,.∴在單調(diào)遞減,,.∴在存在一個(gè)零點(diǎn).綜上,的零點(diǎn)個(gè)數(shù)為1..【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)問(wèn)題,考查了分類討論思想,屬于壓軸題.19、(1),中位數(shù)為;(2)新能源汽車平均每個(gè)季度的銷售量為萬(wàn)臺(tái),以此預(yù)計(jì)年的銷售量約為萬(wàn)臺(tái).【解析】
(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計(jì)算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個(gè)矩形底邊的中點(diǎn)值乘以相應(yīng)矩形的面積,相加可得出銷量的平均數(shù),由此可預(yù)計(jì)年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個(gè)季度的銷售量為(萬(wàn)臺(tái)),由此預(yù)測(cè)年的銷售量為萬(wàn)臺(tái).【點(diǎn)睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.20、(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷單調(diào)性.(Ⅱ)分析題意可得對(duì)任意,恒成立,構(gòu)造函數(shù),則有對(duì)任意,恒成立,然后通過(guò)求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得.故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(II)由題意知.,當(dāng)時(shí),函數(shù)單調(diào)遞增.不妨設(shè),又函數(shù)單調(diào)遞減,所以原問(wèn)題等價(jià)于:當(dāng)時(shí),對(duì)任意,不等式恒成立,即對(duì)任意,恒成立.記,由題意得在上單調(diào)遞減.所以對(duì)任意,恒成立.令,,則在上恒成立.故,而在上單調(diào)遞增,所以函數(shù)在上的最大值為.由,解得.故實(shí)數(shù)的最小值為.21、(1)證明見(jiàn)解析;(2)當(dāng)時(shí),AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過(guò)作,可證平面,根據(jù)計(jì)算,得出的大小,再計(jì)算的長(zhǎng).【詳解】(1)證明:連接BD交AC于點(diǎn)O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時(shí),AC與平面PCD所成的角為.【點(diǎn)睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計(jì)算,屬于中檔題.22、(1);(2)見(jiàn)解析.【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,,且滿足,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店房間清潔托管服務(wù)合同
- 農(nóng)業(yè)產(chǎn)品種植技術(shù)合作協(xié)議
- 珠寶銷售合同
- 物聯(lián)網(wǎng)設(shè)備接入與應(yīng)用服務(wù)合同
- 離婚協(xié)議書(shū)中共同財(cái)產(chǎn)的處理
- 儲(chǔ)能系統(tǒng)投資與運(yùn)營(yíng)合同
- 今年網(wǎng)絡(luò)安全項(xiàng)目保護(hù)協(xié)議
- 農(nóng)業(yè)綜合體建設(shè)項(xiàng)目承包合同
- 2024年工程項(xiàng)目監(jiān)理委托協(xié)議
- 2025班主任學(xué)生行為規(guī)范教育與引導(dǎo)合同3篇
- 智研咨詢發(fā)布-2024年中國(guó)牛油果行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報(bào)告
- 杭州市西湖區(qū)2024年三年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 眼視光學(xué)理論與方法智慧樹(shù)知到答案2024年溫州醫(yī)科大學(xué)
- 2022-2023學(xué)年廣東省廣州市花都區(qū)六年級(jí)(上)期末英語(yǔ)試卷(含答案)
- 公司合伙人合作協(xié)議書(shū)范本
- 2024年中考地理復(fù)習(xí) 人教版全四冊(cè)重點(diǎn)知識(shí)提綱
- 電梯季度維護(hù)保養(yǎng)項(xiàng)目表
- GB/T 44188-2024危險(xiǎn)貨物爆炸品無(wú)約束包裝件試驗(yàn)方法
- 機(jī)動(dòng)車檢測(cè)站質(zhì)量手冊(cè)(根據(jù)補(bǔ)充技術(shù)要求修訂)
- 2024年(學(xué)習(xí)強(qiáng)國(guó))思想政治理論知識(shí)考試題庫(kù)與答案
- 基于LoRa通信的智能家居系統(tǒng)設(shè)計(jì)及研究
評(píng)論
0/150
提交評(píng)論