山西省長治市2025屆高三第二次聯(lián)考數(shù)學試卷含解析_第1頁
山西省長治市2025屆高三第二次聯(lián)考數(shù)學試卷含解析_第2頁
山西省長治市2025屆高三第二次聯(lián)考數(shù)學試卷含解析_第3頁
山西省長治市2025屆高三第二次聯(lián)考數(shù)學試卷含解析_第4頁
山西省長治市2025屆高三第二次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省長治市2025屆高三第二次聯(lián)考數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.42.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.53.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.4.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③5.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.176.在復平面內(nèi),復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.函數(shù)的部分圖象大致是()A. B.C. D.8.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當時,的最大值是()A.8 B.9 C.10 D.119.國家統(tǒng)計局服務業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%10.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.11.已知復數(shù),則對應的點在復平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.已知,則,不可能滿足的關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為正實數(shù),若則的取值范圍是__________.14.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.15.已知函數(shù)是偶函數(shù),直線與函數(shù)的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數(shù)t的值為_________.16.某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_____袋.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設(shè)直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.18.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.19.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.20.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.21.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實數(shù)的最大值.22.(10分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最???

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因為成等比數(shù)列,所以,解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.2、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.3、C【解析】

當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.4、B【解析】

由題意,可設(shè)直線的方程為,利用韋達定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.5、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應用,屬于基礎(chǔ)題.6、D【解析】

將復數(shù)化簡得,,即可得到對應的點為,即可得出結(jié)果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內(nèi)點的對應,難度容易.7、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調(diào)性,極值點等排除選項.8、B【解析】

根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學生對于數(shù)列公式方法的靈活運用.9、D【解析】

根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.10、C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.11、A【解析】

利用復數(shù)除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點的坐標所在象限,屬于基礎(chǔ)題.12、C【解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù),可得,進而,有,而,令,得到,再用導數(shù)法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應用和導數(shù)法求最值,還考查了運算求解的能力,屬于難題,14、81【解析】

根據(jù)二項式系數(shù)和的性質(zhì)可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.15、【解析】

由是偶函數(shù)可得時恒有,根據(jù)該恒等式即可求得,,的值,從而得到,令,可解得,,三點的橫坐標,根據(jù)可列關(guān)于的方程,解出即可.【詳解】解:因為是偶函數(shù),所以時恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因為,所以,即,解得,故答案為:.【點睛】本題考查函數(shù)奇偶性的性質(zhì)及二次函數(shù)的圖象、性質(zhì),考查學生的計算能力,屬中檔題.16、1【解析】

根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應用,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】

(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設(shè),由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.18、(1)(2)32【解析】

利用絕對值不等式的解法求出不等式的解集,得到關(guān)于的方程,求出的值即可;由知可得,,利用三個正數(shù)的基本不等式,構(gòu)造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數(shù)的基本不等式的靈活運用;其中利用構(gòu)造出和為定值即為定值是求解本題的關(guān)鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.19、(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當時,,即,所以在上單調(diào)遞減,所以即時,.(Ⅲ)因為,.令得,.由(Ⅱ)知時,的對稱軸,,,所以.又,可得,此時,在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個不同的零點.又因為,所以在上遞增,即時,恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個不同的零點:,1,.綜上所述,恰有三個不同的零點.【點睛】利用賦值法求出關(guān)系,利用函數(shù)導數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù)是近年高考壓軸題的熱點.20、(1)見解析(2)見解析【解析】

(1)取的中點D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點,由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結(jié),.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論