版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省微山縣二中2025屆高三第二次聯(lián)考數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.2.函數(shù)f(x)=lnA. B. C. D.3.已知,,則()A. B. C. D.4.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.45.已知,則()A. B. C. D.6.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.7.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現(xiàn)了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元8.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q9.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.10.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.11.若不等式在區(qū)間內的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.12.已知函數(shù),下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關于直線對稱 D.的最大值是二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.14.已知函數(shù)與的圖象上存在關于軸對稱的點,則的取值范圍為_____.15.已知,,且,則的最小值是______.16.的展開式中的系數(shù)為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.18.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.20.(12分)已知函數(shù).(1)求證:當時,;(2)若對任意存在和使成立,求實數(shù)的最小值.21.(12分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當?shù)拿娣e取得最大值時,求的周長.22.(10分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.2、C【解析】因為fx=lnx2-4x+4x-23=3、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.4、C【解析】
設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.5、C【解析】
利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.6、A【解析】
求導得到,根據(jù)切線方程得到,故,設,求導得到函數(shù)在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數(shù)在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.7、D【解析】
根據(jù)折線圖、柱形圖的性質,對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.8、C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C9、B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.10、B【解析】
設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.11、C【解析】
由題可知,設函數(shù),,根據(jù)導數(shù)求出的極值點,得出單調性,根據(jù)在區(qū)間內的解集中有且僅有三個整數(shù),轉化為在區(qū)間內的解集中有且僅有三個整數(shù),結合圖象,可求出實數(shù)的取值范圍.【詳解】設函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數(shù)根;當時,在內的解集中僅有三個整數(shù),只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調性和函數(shù)圖象,同時考查數(shù)形結合思想和解題能力.12、D【解析】
通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導數(shù)判斷函數(shù)最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準線為l,P為C上一點∴,.∵M,N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎題.14、【解析】
兩函數(shù)圖象上存在關于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構造函數(shù),求導,求出單調區(qū)間,利用函數(shù)性質得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設函數(shù),其導數(shù),又由,可得:當時,為減函數(shù),當時,為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點問題的拓展.由于函數(shù)的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉化為函數(shù)問題解決.此類問題的切入點是借助函數(shù)的零點,結合函數(shù)的圖象,采用數(shù)形結合思想加以解決.15、1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當且僅當,,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應用,但是由于有3個變量,導致該題不易找到思路,屬于中檔題.16、【解析】
在二項展開式的通項中令的指數(shù)為,求出參數(shù)值,然后代入通項可得出結果.【詳解】的展開式的通項為,令,因此,的展開式中的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,涉及二項展開式通項的應用,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.18、(1);(2)或.【解析】
(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.19、(1);(2)見解析【解析】
(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當且僅當,即時取等號,,當且僅當即時取等號,.【點睛】本題考查分類討論解絕對值不等式,考查三角不等式的應用及基本不等式的應用,是一道中檔題.20、(1)見解析;(2)【解析】
(1)不等式等價于,設,利用導數(shù)可證恒成立,從而原不等式成立.(2)由題設條件可得在上有兩個不同零點,且,利用導數(shù)討論的單調性后可得其最小值,結合前述的集合的包含關系可得的取值范圍.【詳解】(1)設,則,當時,由,所以在上是減函數(shù),所以,故.因為,所以,所以當時,.(2)由(1)當時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當時,在上為減函數(shù),不合題意;(2)當時,,由題意知在上不單調,所以,即,當時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數(shù)的最小值為.【點睛】本題考查導數(shù)在不等式恒成立、等式能成立中的應用,前者注意將欲證不等式合理變形,轉化為容易證明的新不等式,后者需根據(jù)等式能成立的特點確定出函數(shù)應該具有的性質,再利用導數(shù)研究該性質,本題屬于難題.21、(1)(2)【解析】
(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當?shù)拿娣e取得最大值時,最大,結合(1)中條件,即可求出最大時,對應的的值,再根據(jù)余弦定理求出邊,進而得到的周長.【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應用,意在考查學生的轉化能力
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國固定電話芯片行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 新形勢下連接器行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實施研究報告
- 2025-2030年中國整合營銷傳播服務行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 新形勢下聯(lián)合辦公行業(yè)轉型升級戰(zhàn)略制定與實施研究報告
- 2025-2030年中國煤炭檢測實驗分析儀器行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 網(wǎng)絡工程師工作總結計劃及建議
- 全球新藥研發(fā)進展月報-第45期-2024年12月刊
- 建設局部門預算執(zhí)行情況匯報范文
- 在國有企業(yè)2024年歲末年初安全生產(chǎn)工作會議上的講話
- 2025年鐵合金爐料項目可行性研究報告
- 新人教版一年級數(shù)學下冊全冊導學案
- 2025年中考語文復習之現(xiàn)代文閱讀:非連續(xù)性文本閱讀(10題)
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 商業(yè)咨詢報告范文模板
- 2024年度軟件定制開發(fā)合同(ERP系統(tǒng))3篇
- 家族族譜模板
- 家譜修編倡議書范文
- (正式版)JBT 10437-2024 電線電纜用可交聯(lián)聚乙烯絕緣料
- 教科版三年級上冊科學期末測試卷(二)【含答案】
- A5技術支持的課堂導入作業(yè)1—問題描述.針對日常教學中的某一主題針對教學目標、教學內容以及教學對象用簡短的語言描述當前課堂導入環(huán)節(jié)中存在的問題和不足以及借助信息技術改進課堂導入的必要性
- 國家開放大學《土木工程力學(本)》章節(jié)測試參考答案
評論
0/150
提交評論