江蘇省連云港市2025屆高三數(shù)學(xué)上學(xué)期第一次月考試題含解析_第1頁
江蘇省連云港市2025屆高三數(shù)學(xué)上學(xué)期第一次月考試題含解析_第2頁
江蘇省連云港市2025屆高三數(shù)學(xué)上學(xué)期第一次月考試題含解析_第3頁
江蘇省連云港市2025屆高三數(shù)學(xué)上學(xué)期第一次月考試題含解析_第4頁
江蘇省連云港市2025屆高三數(shù)學(xué)上學(xué)期第一次月考試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Page23江蘇省連云港市2024屆高三數(shù)學(xué)上學(xué)期第一次月考試題一、單選題:在每小題給出的四個選項中,只有一項是符合題目要求的.(每題5分,8題共40分)1.若集合,,則()A. B. C. D.【答案】D【解析】【分析】求出與中不等式的解集確定出與,再求出與的并集.【詳解】集合,,則,故選:D2.已知角的終邊經(jīng)過點(diǎn),則函數(shù)的值等于()A. B. C. D.【答案】A【解析】【分析】先利用三角函數(shù)的定義求出,從而可求出的值【詳解】解:因為角的終邊經(jīng)過點(diǎn),所以,所以故選:A3.函數(shù)(且)的圖象可能為()A. B. C. D.【答案】D【解析】【詳解】因為,故函數(shù)是奇函數(shù),所以解除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.4.設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是()A. B.C. D.【答案】A【解析】【分析】利用的導(dǎo)函數(shù),結(jié)合在區(qū)間上的單調(diào)性列不等式組求得的取值范圍.【詳解】由,則,當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增,又函數(shù)在區(qū)間上單調(diào)遞減,所以,解得,故選:A5.已知函數(shù),則函數(shù)的最小正周期為()A. B. C. D.【答案】D【解析】【分析】利用誘導(dǎo)公式以及協(xié)助角公式化簡,再依據(jù)即可得出答案.【詳解】由題意得在由.故選:D6.已知函數(shù),若為銳角且,則的值為()A. B. C. D.【答案】D【解析】【分析】由得,結(jié)合為銳角可得,然后利用二倍角公式可得.【詳解】因為,所以,因為為銳角,且,所以,所以,.故選:D.7.已知定義在上的偶函數(shù),若正實(shí)數(shù)、滿意,則的最小值為()A. B. C. D.【答案】B【解析】【分析】由偶函數(shù)定義可構(gòu)造方程求得,由此得到解析式;由已知等式可得到,依據(jù),配湊出基本不等式的形式,利用基本不等式可求得結(jié)果.【詳解】為上的偶函數(shù),,即,即,整理得:,,,,即;(當(dāng)且僅當(dāng),即時取等號);的最小值為.故選:B.8.已知定義在[,]上的函數(shù)滿意,且當(dāng)x[,1]時,,若方程有三個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(,] B.(,]C.(,] D.(,]【答案】B【解析】【分析】由題設(shè),求分段函數(shù)的解析式并畫出圖像,將方程有三個不同實(shí)根轉(zhuǎn)化為和有三個不同的交點(diǎn)問題,由數(shù)形結(jié)合思想結(jié)合導(dǎo)數(shù)探討函數(shù)的交點(diǎn)狀況,進(jìn)而求參數(shù)的范圍.【詳解】∵當(dāng)時,,∴當(dāng)時,,綜上,,當(dāng)時,,則在上單調(diào)遞增,當(dāng)時,,則在上單調(diào)遞減,∵有三個不同的實(shí)數(shù)根,∴的圖像和直線有三個不同的交點(diǎn),作的大致圖像如圖所示,當(dāng)直線和的圖像相切時,設(shè)切點(diǎn)為,∴,可得,,代入,可得,當(dāng)過點(diǎn)時,,由圖知,實(shí)數(shù)的取值范圍為.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:將方程有三個不同實(shí)數(shù)根轉(zhuǎn)化為函數(shù)圖象有三個不同交點(diǎn)問題,應(yīng)用數(shù)形結(jié)合思想及導(dǎo)數(shù)探討函數(shù)圖象的交點(diǎn)狀況,求參數(shù).二、多項選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分9.已知命題;命題.若是的充分不必要條件,則實(shí)數(shù)的值是()A. B. C. D.【答案】CD【解析】【分析】先將命題化為最簡形式,再代入選項中的值推斷即可.【詳解】對于:;對于.對于A,當(dāng)時,,是的既不充分也不必要條件,故A錯誤;對于B,當(dāng)時,,是的既不充分也不必要條件,故B錯誤;對于C,當(dāng)時,,是的充分不必要條件,故C正確;對于D,當(dāng)時,,是的充分不必要條件,故D正確.故選:CD10.若定義域為R的函數(shù)在上為減函數(shù),且函數(shù)為偶函數(shù),則()A. B.C. D.【答案】BCD【解析】【分析】依據(jù)條件,分析函數(shù)的單調(diào)性和對稱性,再依據(jù)的性質(zhì)逐項分析即可.【詳解】因為是偶函數(shù),所以的圖像關(guān)于直線對稱,即當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,在處取得最大值;對于A,,錯誤;對于B,,正確;對于C,,正確;對于D,,正確;故選:BCD.11.函數(shù)在一個周期內(nèi)的圖象如圖所示,則().A.該函數(shù)的解析式為B.該函數(shù)圖象的對稱中心為,C.該函數(shù)的單調(diào)遞增區(qū)間是,D.把函數(shù)的圖象上全部點(diǎn)的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)不變,可得到該函數(shù)圖象【答案】ACD【解析】【分析】依據(jù)圖象可得函數(shù)的解析式,然后依據(jù)三角函數(shù)的性質(zhì)及圖象變換規(guī)律逐項分析即得.【詳解】由題圖可知,,周期,所以,則,因為當(dāng)時,,即,所以,,即,,又,故,從而,故A正確;令,,得,,故B錯誤;令,,得,,故C正確;函數(shù)的圖象上全部點(diǎn)的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)不變,可得到,故D正確.故選:ACD.12.已知函數(shù),則下列結(jié)論正確的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上有微小值C.方程在上只有一個實(shí)根D.方程在上有兩個實(shí)根【答案】ABD【解析】【分析】求得函數(shù)的導(dǎo)數(shù),求得函數(shù)的單調(diào)性,可判定A,由函數(shù)的單調(diào)性和極值的概念,可判定B,利用函數(shù)的單調(diào)性,極值、端點(diǎn)的函數(shù)值,可判定C;將特別的解轉(zhuǎn)化為兩個函數(shù)圖象交點(diǎn)的個數(shù),結(jié)合圖象,可判定D,即可得到答案.【詳解】由題意,函數(shù),可得,當(dāng),即,所以,所以,解得,當(dāng)時,;當(dāng)時,,當(dāng),即,所以,所以,解得,當(dāng)時,;當(dāng)時,,所以當(dāng)時,單調(diào)遞減,所以A正確;又因為當(dāng)時,,當(dāng)時,,所以在出取得微小值,所以B正確;因為,所以在上不只有一個實(shí)數(shù)根,所以C不正確;因為方程,即,即,所以,正切函數(shù)在為單調(diào)遞增函數(shù),又由函數(shù),可得,當(dāng)和時,,當(dāng)時,,且當(dāng)時,,作出兩函數(shù)大致圖象,如圖所示,由圖象可得,當(dāng),函數(shù)與的圖象有兩個交點(diǎn),所以D正確.故選:ABD.【點(diǎn)睛】利用導(dǎo)數(shù)探討函數(shù)的單調(diào)性(區(qū)間)的方法:(1)當(dāng)導(dǎo)函數(shù)不等式可解時,解不等式或,求出函數(shù)的單調(diào)區(qū)間;(2)當(dāng)方程可解時,解出方程的實(shí)根,依據(jù)實(shí)根把函數(shù)的定義域劃分為幾個區(qū)間,確定各區(qū)間的符號,從而確定函數(shù)的單調(diào)區(qū)間;(3)若導(dǎo)函數(shù)對應(yīng)的方程、不等式都不行解,依據(jù)結(jié)構(gòu)特征,利用圖像與性質(zhì)確定的符號,從而確定單調(diào)區(qū)間.三、填空題:本大題共4小題,每小題5分,共20分.13.函數(shù)的定義域為____.【答案】【解析】【詳解】由題意得,解得定義域為.14.曲線在處的切線的傾斜角為,則______.【答案】【解析】【分析】由導(dǎo)數(shù)幾何意義求得,再結(jié)合同角三角函數(shù)基本關(guān)系即可求解【詳解】依據(jù)已知條件可知:,因為曲線在處的切線的傾斜角為,所以,因為故答案為:15.若函數(shù)的圖像與直線的三個相鄰交點(diǎn)的橫坐標(biāo)分別是,,,則實(shí)數(shù)的值為________.【答案】4【解析】【分析】由題可分析函數(shù)與的三個相鄰交點(diǎn)中不相鄰的兩個交點(diǎn)距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點(diǎn)睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的16.已知函數(shù).①當(dāng)時,若函數(shù)有且只有一個極值點(diǎn),則實(shí)數(shù)的取值范圍是______;②若函數(shù)的最大值為1,則______.【答案】①.②.【解析】【分析】①首先求出當(dāng)時的極值點(diǎn),依據(jù)題意即可得到的取值范圍.②分別探討當(dāng),和時,求出函數(shù)的最大值,比較即可求出的值.【詳解】①當(dāng)時,.,令,解得.因為函數(shù)在有且只有一個極值點(diǎn),所以.②當(dāng)時,,此時,舍去.當(dāng)時,,.,..所以,因為,所以.當(dāng)時,,.,令,解得.,,為增函數(shù),,,為減函數(shù)..當(dāng)時,,所以,(1)當(dāng)時,;當(dāng)時,即,,解得(舍去).當(dāng)時,即,,解得(舍去);(2)當(dāng)時,,只有且,這樣的不存在.綜上所述:.故答案為:①;②.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求含參函數(shù)的極值點(diǎn)和最值,分類探討是解題的關(guān)鍵,屬于難題.四、解答題:本大題共6個大題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟17.設(shè)函數(shù),(1)求;(2)求函數(shù)全部零點(diǎn)之和.【答案】(1)(2)【解析】【分析】(1)依據(jù)三角恒等改變公式化簡可得,再求解即可;(2)依據(jù)零點(diǎn)的表達(dá)式,求出在上的全部零點(diǎn)再求和即可.【小問1詳解】,【小問2詳解】令,則,或,,即或,,,或或或,,函數(shù)全部零點(diǎn)之和18.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且.(I)求角B的大小;(II)求cosA+cosB+cosC的取值范圍.【答案】(I);(II)【解析】【分析】(I)方法二:首先利用正弦定理邊化角,然后結(jié)合特別角的三角函數(shù)值即可確定角B的大??;(II)方法二:結(jié)合(Ⅰ)的結(jié)論將含有三個角的三角函數(shù)式化簡為只含有角A的三角函數(shù)式,然后由三角形為銳角三角形確定角A的取值范圍,最終結(jié)合三角函數(shù)的性質(zhì)即可求得的取值范圍.【詳解】(I)[方法一]:余弦定理由,得,即.結(jié)合余弦定,∴,即,即,即,即,∵為銳角三角形,∴,∴,所以,又B為的一個內(nèi)角,故.[方法二]【最優(yōu)解】:正弦定理邊化角由,結(jié)合正弦定理可得:為銳角三角形,故.(II)[方法一]:余弦定理基本不等式因為,并利用余弦定理整理得,即.結(jié)合,得.由臨界狀態(tài)(不妨取)可知.而為銳角三角形,所以.由余弦定理得,,代入化簡得故的取值范圍是.[方法二]【最優(yōu)解】:恒等變換三角函數(shù)性質(zhì)結(jié)合(1)的結(jié)論有:.由可得:,,則,.即的取值范圍是.【整體點(diǎn)評】(I)的方法一,依據(jù)已知條件,利用余弦定理經(jīng)過較困難的代數(shù)恒等變形求得,運(yùn)算實(shí)力要求較高;方法二則利用正弦定理邊化角,運(yùn)算簡潔,是常用的方法,確定為最優(yōu)解;(II)的三種方法中,方法一涉及到較為困難的余弦定理代入化簡,運(yùn)算較為麻煩,方法二干脆運(yùn)用三角恒等變形,簡潔明快,確定為最優(yōu)解.19.在△ABC中,角A,B,C的對邊分別為a,b,c,已知.(1)求的值;(2)在邊BC上取一點(diǎn)D,使得,求的值.【答案】(1);(2).【解析】【分析】(1)方法一:利用余弦定理求得,利用正弦定理求得.(2)方法一:依據(jù)的值,求得的值,由(1)求得的值,從而求得的值,進(jìn)而求得的值.【詳解】(1)[方法一]:正余弦定理綜合法由余弦定理得,所以.由正弦定理得.[方法二]【最優(yōu)解】:幾何法過點(diǎn)A作,垂足為E.在中,由,可得,又,所以.在中,,因此.

(2)[方法一]:兩角和的正弦公式法由于,,所以.由于,所以,所以.所以.由于,所以.所以.[方法二]【最優(yōu)解】:幾何法+兩角差的正切公式法在(1)的方法二的圖中,由,可得,從而.又由(1)可得,所以.[方法三]:幾何法+正弦定理法在(1)的方法二中可得.在中,,所以.在中,由正弦定理可得,由此可得.[方法四]:構(gòu)造直角三角形法如圖,作,垂足為E,作,垂足為點(diǎn)G.在(1)的方法二中可得.由,可得.在中,.由(1)知,所以在中,,從而.在中,.所以.【整體點(diǎn)評】(1)方法一:運(yùn)用余弦定理求得,然后運(yùn)用正弦定理求得;方法二:抓住45°角的特點(diǎn),作出協(xié)助線,利用幾何方法簡潔計算即得答案,運(yùn)算尤其簡潔,為最優(yōu)解;(2)方法一:運(yùn)用兩角和的正弦公式求得的正弦值,進(jìn)而求解;方法二:適當(dāng)作出協(xié)助線,利用兩角差的正切公式求解,運(yùn)算更為簡潔,為最優(yōu)解;方法三:在幾何法的基礎(chǔ)上,運(yùn)用正弦定理求得的正弦值,進(jìn)而得解;方法四:更多的運(yùn)用幾何的思維方式,干脆作出含有的直角三角形,進(jìn)而求解,也是很美麗的方法.20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,AD=CD,∠ABC=120°.(1)求證:平面PAC⊥平面PBD;(2)若點(diǎn)M為PB的中點(diǎn),點(diǎn)N為線段PC上一動點(diǎn),求直線MN與平面PAC所成角的正弦值的取值范圍.【答案】(1)證明見解析(2)【解析】【分析】(1)設(shè)的中點(diǎn)為O,先證明,由條件可得,從而可證明結(jié)論.(2)由(1)可得,以所在的直線分別建立x軸和y軸,過O點(diǎn)作平行于的直線為z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】設(shè)的中點(diǎn)為O,因為,所以,因為,所以,所以B,O,D三點(diǎn)共線,所以,因為平面平面,所以,因為平面平面,所以平面,因為平面,所以平面平面.【小問2詳解】由(1)可得,以所在的直線分別建立x軸和y軸,過O點(diǎn)作平行于的直線為z軸建立空間直角坐標(biāo)系,則,因為M為的中點(diǎn),所以,設(shè),所以,所以,由(1)知平面,所以平面的一個法向量為,設(shè)直線與平面所成角為,則,由的對稱軸為,當(dāng)時,當(dāng)時,即當(dāng)時,,所以所以,即直線與平面所成角的正弦值的取值范圍為21.為了給學(xué)生供應(yīng)優(yōu)雅的學(xué)習(xí)環(huán)境,某學(xué)校確定在夾角為30°的兩條道路?之間建立一個半橢圓形態(tài)的小花園,如圖所示,百米,O為AB的中點(diǎn),OD為橢圓的長半軸,在半橢圓形區(qū)域內(nèi)再建立一個三角形區(qū)域OMN,作為生物課學(xué)習(xí)植物的基地.其中M,N在橢圓上,且MN的傾斜角為45°,交OD于G.(1)若百米,為了不破壞道路EF,求橢圓長半軸長的最大值;(2)若橢圓的離心率為,當(dāng)線段OG長為何值時,生物學(xué)習(xí)基地的面積最大?【答案】(1)(2)線段長為百米【解析】【分析】(1)建立平面直角坐標(biāo)系,利用直線與橢圓相切去求橢圓長半軸長的最大值;(2)利用設(shè)而不求的方法先求得面積的表達(dá)式,再對其求最大值即可解決.【小問1詳解】以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸建立平面直角坐標(biāo)系,設(shè)橢圓方程為,因為,則,又?夾角為30°,所以直線的方程為.又因為,則,則橢圓方程為,為了不破壞道路,則直線與橢圓至多只有一個交點(diǎn),聯(lián)立方程組,得,由于直線與半橢圓至多只有一個交點(diǎn),則,又,得.當(dāng)時半橢圓形小花園與道路直線相切,所以橢圓長半軸長的最大值為.【小問2詳解】設(shè)橢圓焦距為,由橢圓的離心率,,,解得,所以,橢圓的方程為.設(shè),又傾斜角為45°,且交于,所以直線的方程為,設(shè),,由得,則,,則,當(dāng)且僅當(dāng)時,的面積最大.所以當(dāng)線段長為百米,生物學(xué)習(xí)基地的面積最大.22.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論